FINAL MONITORING REPORT (MY2) #### **ALLIANCE HEADWATERS MITIGATION SITE** Johnston County, North Carolina NCDEQ Contract No. 6832 DWR ID No. 20160405 DMS ID No. 97086 USACE Action ID No. SAW-2016-00882 RFP No. 16-006477 > Neuse River Basin HUC 03020201 Data Collection: January - October 2021 Submission: December 2021 ### Prepared for: NORTH CAROLINA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF MITIGATION SERVICES 1652 MAIL SERVICE CENTER RALEIGH, NORTH CAROLINA 27699-1652 Restoration Systems, LLC 1101 Haynes St. Suite 211 Raleigh, North Carolina Ph: (919) 755-9490 Fx: (919) 755-9492 #### Response to Monitoring Year 2 (2021) DMS Comments Alliance Headwaters Stream and Wetland Mitigation Site (DMS #97086) Neuse River Basin 03020201, Johnston County Contract No. 6832 Comments Received (Black Text) & Responses (Blue Text) #### Report 1. Please revise the report to reflect the growing season established in the Mitigation Plan. Growing season approved in the Mitigation Plan is March 1-November 4 with the March 1 date supported by soil temperature readings above 41 degrees. The direction to use dates from Mitigation Plan was confirmed in a recent e-mail from the IRT. The growing season was updated to March 1-November 4 to reflect the approved methods described in the mitigation plan. You may omit table 13 in this and future reports. Table 13 was omitted from the report and subsequent tables were renumbered. #### Electronic Deliverables: - Please be sure that BHR is consistently being calculated after the areas outside of the main channel are excluded. For example, UT2-XS1 would only have a BHR of 0.82 if the areas outside of the main channel were included in determining the bankfull elevation that achieves the as built cross sectional area. In other instances (e.g. UT4-XS2) it is clear that those areas outside of the main channel were excluded. Please review these calculations and verify that the same procedure was used throughout. All cross-sections were checked and edited if deemed necessary to exclude the areas outside of the channel when calculating bankfull elevation. Cross-section figures and morphology tables were updated accordingly. - 2. Please submit the soil temperature data. The raw soil temperature data is included in the hydrology folder of the digital submittal. - 3. Please update Table D to reflect the number of groundwater gauges currently on site. Table D was updated accordingly. #### Alliance Headwaters -- Year 2 (2021) Monitoring Summary #### **General Notes** - No encroachment was identified in Year 2 (2021) - No evidence of nuisance animal activity (i.e., heavy deer browsing, beaver activated, etc.) was observed. #### Streams - Stream monitoring measurements indicate minimal changes in the cross-sections as compared to as-built data. The channel geometry compares favorably with the proposed conditions outlined in the Detailed Restoration Plan and as constructed. - Across the Site, all in-stream structures are intact and functioning as designed. No stream areas of concern were identified during year 2 (2021) monitoring. Tables for Year 2 (2021) data and annual quantitative assessments are included in Appendix D. - All seven flow gauges recorded continuous flow for more than the 30-days. Flow periods ranged from 97 to 201 consecutive days (Appendix E). - One bankfull event was documented during Year 2 (2021) monitoring for a total of three bankfull events to date, with events occurring in each of the 2 monitoring years (Table 16, Appendix E). #### Wetlands • Twenty-seven of the thirty-five groundwater gauges met success criteria. Across the Site, the development of herbaceous hydrophytic species is abundant. Due to equipment malfunctions and general wetland hydrology failure during Year 1 (2021), the original twenty-nine groundwater gauges were replaced with a standard Onset HOBO pressure-based water level data loggers in January 2021. Also, six additional wetland gauges were installed in areas of the Site RS felt needed additional data points (near GW19, near vegetation plot 31, near GW 7, at the upstream portion of UT 2, and across UT 1 from GW 11-12). New gauge locations are depicted on Figures 2A-B (Appendix B). #### Vegetation Thirty of the 32 fixed vegetation monitoring plots met success in Year 2 with an average of 506 planted stems/acre. Additionally, 17 of 18 random transects met success with an average of 643 stems/acre. No areas of vegetation concern were identified in year 2. #### Site Maintenance Report (2021) | Invasive Species Work | Maintenance work | |-----------------------|------------------| | 8/17/21
Cattail | None | ## **Site Monitoring Activity and Reporting History** | Project Millstones | Stream
Monitoring
Complete | Vegetation
Monitoring
Complete | Wetland
Monitoring | Data Analysis
Complete | Completion or Delivery | |------------------------|----------------------------------|--------------------------------------|-----------------------|---------------------------|------------------------| | Construction Earthwork | | | | | July 31, 2019 | | Planting | | | | | January 16, 2020 | | As-Built Documentation | Dec. 11-16, 2020 | Jan. 16-17, 2020 | | January 2020 | March 2020 | | Year 1 Monitoring | July 23, 2020 | July 27-28, 2020 | Jan. – Nov. 2020 | November 2020 | January 2021 | | Year 2 Monitoring | March 10, 2021 | July 6, 2021 | Jan. – Nov. 2021 | November 2021 | December 2021 | # FINAL MONITORING REPORT (MY2) #### **ALLIANCE HEADWATERS MITIGATION SITE** Johnston County, North Carolina NCDEQ Contract No. 6832 DWR ID No. 20160405 DMS ID No. 97086 USACE Action ID No. SAW-2016-00882 RFP No. 16-006477 > Neuse River Basin HUC 03020201 Data Collection: January - October 2021 Submission: December 2021 #### Prepared for: NORTH CAROLINA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF MITIGATION SERVICES 1652 MAIL SERVICE CENTER RALEIGH, NORTH CAROLINA 27699-1652 #### Prepared by: Restoration Systems, LLC 1101 Haynes Street, Suite 211 Raleigh, North Carolina 27604 Contact: Raymond Holz 919-755-9490 (phone) 919-755-9492 (fax) And Axiom Environmental, Inc. 218 Snow Avenue Raleigh, North Carolina 27603 Contact: Grant Lewis 919-215-1693 (phone) #### **TABLE OF CONTENTS** | 1.0 PROJECT SUMMARY | 1 | |--------------------------------------|---| | 1.1 Project Goals & Objectives | 1 | | 1.2 Project Background | | | 1.3 Project Components and Structure | | | 1.4 Success Criteria | | | 2.0 METHODS | | | 2.1 Monitoring | | | 3.0 REFERENCES | | | | | #### **APPENDICES** #### Appendix A. Background Tables and Map Figure 1. Site Location Table 1. Project Components and Mitigation Units Table 2. Project Activity and Reporting History Table 3. Project Contacts Table Table 4. Project Attributes Table #### Appendix B. Visual Assessment Data Figures 2 & 2A-2B. Current Conditions Plan View Tables 5A-5H. Visual Stream Morphology Stability Assessment Table 6. Vegetation Condition Assessment **Vegetation Plot Photographs** #### Appendix C. Vegetation Data Table 7. Planted Bare Root Woody Vegetation Table 8. Total Stems by Plot and Species Table 9. Temporary Vegetation Plot Data Table 10. MY1 Planted Vegetation Totals Table 11. MY1 Temporary Vegetation Plot Planted Vegetation Totals #### Appendix D. Stream Geomorphology Data Tables 12A-12E. Baseline Stream Data Summary Tables 13A-13D. Monitoring Data-Dimensional Morphology Summary (Dimensional Parameters-Cross-sections) Tables 14A-14E. Monitoring Data-Stream Reach Data Summary **Cross-Section Plots** #### Appendix E. Hydrology Data Tables 15A-G. Channel Evidence **Stream Gauge Graphs** Table 16. Verification of Bankfull Events Figure E1. 30/70 Percentile Graph for Rainfall Soil Temp Graph Table 17. Groundwater Hydrology Data **Groundwater Gauge Graphs** #### 1.0 PROJECT SUMMARY Restoration Systems, LLC has established the North Carolina Division of Mitigation Services (NCDMS) Alliance Headwaters Mitigation Site (Site). #### 1.1 Project Goals & Objectives Project goals and associated objectives are summarized in Table A. Table A: Summary of Goals and Objectives for the Alliance Headwaters Mitigation Project | Goals | Objectives | Pre-construction
Functional Status | Post-construction Functional Status | | | | | | |---|---|---------------------------------------|-------------------------------------|--|--|--|--|--| | | Goals Specific to the Neuse River and Hannah Creek Watershed Discussed in the RBRP (NCDMS 2010 and 2015) and <i>Neuse River Basinwide Plan</i> (NCDWQ 2009) | | | | | | | | | Remove Direct
Nutrient Inputs
from
Agricultural
Lands | Restoration and enhancement of minimum 50-foot riparian buffers along all Project reaches Protection of riparian buffers with a perpetual conservation easement Reducing the amount of land in active row crop agriculture Decreasing drainage to restore wetlands, promoting higher water table conditions, and denitrification | Not Functioning | Functioning | | | | | | | Remove Direct
Sediment
Inputs from
Agricultural
Lands | Restoration of stabilized headwater stream systems Restoration of wetlands and riparian buffers to filter runoff Increase the distance between active farming operations and receiving waters Stabilization of gullies and ditches | Not Functioning | Functioning | | | | | | | | Additional Benefits to Hannah Creek Significant Natural | Heritage Area | | | | | | | | Improved
Aquatic
Habitats | Restoration of appropriate
bed form diversity, headwater stream/wetland form, and in-stream structures to provide suitable habitat Restoration of self-sustaining stream/wetland headwaters Restoration of riparian buffer vegetation to provide organic matter and shade | Not Functioning | Functioning | | | | | | | Improved
Connectivity | Restore connectivity to historic remnant channel features. Improved aquatic connectivity to Hannah Creek | Not Functioning | Functioning | | | | | | #### 1.2 Project Background The Alliance Headwaters Mitigation Site (Site) is in Johnston County, approximately six miles southeast of Four Oaks and one mile east of US 701 (Figure 1, Appendix A). The Project is located within the NC Division of Mitigation Services (DMS) targeted watershed for the Neuse River Basin Hydrologic Unit (HU) 03020201150020 and the NC Division of Water Resources (NCDWR) subbasin 03-04-04. A review of historic aerials of the Site, and adjacent parcels, taken in 1939, 1965, 1971, 1988, and 2005, revealed that while agriculture was prevalent in the area, much of the Site was not converted to agricultural uses until after 1997/1998. Additional aerial photographs from Google Earth show that before construction, the project site had been manipulated for agricultural production numerous times between 1997/1998 and 2019. The channelization of perimeter ditches to carry stream flow served to undermine the hydrologic connection between the headwaters of UT3 and UT4 (located in the forested sections of the Site) from their downstream channels. In addition, two small impoundments were excavated on the historical flow paths of UT1 and UT3 during this time. The Site has existed in its pre-construction condition since approximately 2005. Current land use near the Site is predominately agriculture (crop and livestock production) and silviculture. While the Site is near (< 6 miles) to two major interstates (I-95 and I-40), there are no foreseeable signs of impending land use changes or development pressure that would impact the Project's watershed. The conservation easement will eliminate the potential for future development and/or agricultural use in the floodplain areas of the restored streams. #### 1.3 Project Components and Structure Proposed Site restoration activities generated 6029 Stream Mitigation Units (SMUs) and 39.4 riverine Wetland Mitigation Units (WMUs) within a 71.7-acre conservation easement as the result of the following. - Restoration of 6,529 linear feet of stream channels that have been straightened and channelized for agricultural purposes - Restoration of 32.6 acres of drained hydric soil to riparian riverine wetlands as the result of stream restoration activities and ditch plugging - Areas of potential wetland riparian riverine restoration total approximately 7.0 acres of drained soils with hydric inclusions - Enhancement of 0.38 acres of jurisdictional riparian headwater forest through stream realignment activities and supplemental wetland plantings - Creation of 1.99 acres of riparian riverine wetlands in areas of drained hydric soil requiring bench excavation - Preservation of 16.39 acres of jurisdictional riparian riverine wetlands located within forested headwater systems Additional activities that occurred at the Site included the following. - Planting 49.9 acres of the Site with 35,200 stems (planted species and densities by zone are included in Table 7 [Appendix C]) - Application of permanent seed mix across 49.9 acres of the Site and temporary seed mix consisting of grain rye, millet, clover, and turnip Site design was completed in October 2018. Construction started on May 13, 2019, and ended within a final walkthrough on July 31, 2019. The Site was planted on January 16, 2020. Completed project activities, reporting history, completion dates, project contacts, and background information are summarized in Tables 1-4 (Appendix A). #### 1.4 Success Criteria Performance criteria outlined in the NCDMS Mitigation Plan Template (ver. 10/2015), and US Army Corps of Engineers – Wilmington District Public Notice: Notification of Issuance of Guidance for Compensatory Stream and Wetland Mitigation Conducted for Wilmington District (October 24, 2016), will be followed and are briefly outlined below. Monitoring data collected on the Site will include reference photos, plant survival analyses, channel stability analyses, wetland hydrological analysis, and biological data if specifically required by permit conditions. Monitoring will be conducted for seven years, unless the USACE, in consultation with the Interagency Review Team (IRT), agrees that monitoring may be terminated early. Early closure will only be provided through written approval from the USACE in consultation with the IRT. Annual monitoring reports will be submitted to the NCDMS by RS no later than November 30 of each monitoring year. #### **Table B: Success Criteria** #### Streams - All streams must maintain an Ordinary High-Water Mark (OHWM), per RGL 05-05. - A continuous surface flow must be documented each year for at least 30 consecutive days. - Bank height ratio (BHR) cannot exceed 1.2 for a majority of measured cross sections on a given reach. - Entrenchment ratio (ER) must be 2.2 or above for a majority of measured riffle cross-sections on a given reach - BHR and ER should not change by more than 10% in any given year for a majority of a given reach. - Must document the occurrence of at least 4 bankfull events in separate years during the monitoring period. #### **Wetland Hydrology** Saturation or inundation within the upper 12 inches of the soil surface for, at a minimum, 10 percent of the growing season during average climatic conditions. Note: Soil temperature for growing season establishment will be determined using a continuously logging soil probe installed at the rain gauge. Soil temperature will be measured from mid-February through the end of April (at a minimum). #### Vegetation - Within planted portions of the Site, a minimum of 320 stems per acre must be present at year 3; a minimum of 260 stems per acre must be present at year 5; and a minimum of 210 stems per acre must be present at year 7. - Trees must average 7 feet in height at year 5 and 10 feet in height at year 7. - Planted and volunteer stems are counted, provided they are included in the approved planting list for the Site. - Any single species can only account for 50% of the required stems per monitoring plot. #### 2.0 METHODS Monitoring requirements and success criteria outlined in this plan follow the October 24, 2016, NC Interagency Review Team *Wilmington District Stream and Wetland Compensatory Mitigation Update*. Monitoring will be conducted by Axiom Environmental, Inc. Annual monitoring reports of the data collected will be submitted to the NCDMS by Restoration Systems no later than December 31 of each monitoring year data is collected. The monitoring schedule is summarized in Table C. **Table C: Monitoring Schedule** | Resource | Year 1 | Year 2 | Year 3 | Year 4 | Year 5 | Year 6 | Year 7 | |-------------------|--------|--------|--------|--------|--------|--------|--------| | Streams | х | Х | х | | Х | | х | | Wetlands | х | х | х | х | х | х | х | | Vegetation | Х | Х | Х | | Х | | х | | Visual Assessment | Х | х | х | х | Х | х | х | | Report Submittal | х | х | х | х | х | х | х | #### 2.1 Monitoring The monitoring parameters are summarized in Table D. #### **Stream Summary** All streams are functioning as designed, and no stream areas of concern were observed during year 2 (2021) monitoring. Stream morphology data is available in Appendix D. #### **Wetland Summary** #### Summary of Monitoring Period/Hydrology Success Criteria by Year | Year | Soil Temperatures/Date Bud
Burst Documented | Monitoring Period Used for
Determining Success | 10 Percent of
Monitoring Period | |---------------|--|---|------------------------------------| | 2020 (Year 1) | March 2, 2020* | March 2-November 4
(248 days) | 25 days | | 2021 (Year 2) | March 1, 2021* | March 1-November 4
(249 days) | 25 days | ^{*}Based on observed/documented bud burst and data collected from a soil temperature data logger located on the Site. Twenty-seven of the thirty-five groundwater gauges met success criteria for the year 2 (2021) monitoring period (Appendix E). Across the Site, the development of herbaceous hydrophytic species is abundant. Due to equipment malfunctions and general wetland hydrology failure during Year 1 (2021), the original twenty-nine groundwater gauges were replaced with a standard Onset HOBO pressure-based water level data loggers in January 2021. Also, six additional wetland gauges were installed in areas of the Site RS felt needed additional data points (near GW19, near vegetation plot 31, near GW 7, at the upstream portion of UT 2, and across UT 1 from GW 11-12). New gauge locations are depicted on Figures 2A-B (Appendix B). In general, on-site observations indicate wetland re-establishment is trending towards achieving success criteria. #### **Vegetation Summary** During quantitative vegetation sampling, 32 sample plots (10-meter by 10-meter) were installed within the Site as per guidelines established in *CVS-EEP Protocol for Recording Vegetation*, *Version 4.2* (Lee et al. 2008). Year 2 (2021) measurements also included 18 random sample plots (a mix of 50-meter by 2-meter and 25-meter by 4-meter). Measurements of all 50 plots resulted in an average of 555 planted stems/acre excluding livestakes. Additionally, 30 of the 32 permanent plots and 17 of the 18 temporary transects met success criteria. Plots 28 and 29 were each one stem shy of meeting success criteria. Planted stem mortality in these plots is likely due to localized seasonal inundation of these areas. A temporary transect in the vicinity of these plots (Transect
11) met success criteria with 567 stems/acre. Transect 15 was 3 stems shy of meeting success criteria. This is likely due to dense herbaceous competition in this area. Permanent plots 14 and 16 are located on either side of this transect, and they both met success criteria with 809 and 567 stems per acre respectively. Year 2 (2021) vegetation data is summarized in Tables 8-11 (Appendix C). **Table D: Monitoring Summary** | Table D. Wolling | Stream Parameters | | | | | | | | | |------------------------------------|--|---|--|---|--|--|--|--|--| | Parameter | Method | Schedule/Frequency | Number/Extent | Data Collected/Reported | | | | | | | Stream Profile | Full longitudinal survey | As-built (unless otherwise required) | All restored stream channels | Graphic and tabular data. | | | | | | | Stream Dimension | Cross-sections | Years 1, 2, 3, 5, and 7 | Total of 16 cross-sections on restored channels | Graphic and tabular data. | | | | | | | Channel Stability | Visual Assessments | Yearly | All restored stream channels | Areas of concern to be depicted on a plan view figure with a written assessment and photograph of the area included in the report. | | | | | | | | Additional Cross-sections | Yearly | Only if instability is documented during monitoring | Graphic and tabular data. | | | | | | | Stream Hydrology | Continuous monitoring of surface water gauges and/or trail camera | Continuous recording through the monitoring period | Total of 7 surface water gauges: One gauge on UT1 – R2, UT1 – R3, UT1A, UT2, UT3 – R1, UT3 – R2, and UT4 | Surface water data for each monitoring period as depicted in Figures 2A-2B. | | | | | | | Bankfull Events | Continuous monitoring of surface water gauges and/or trail camera | Continuous recording through the monitoring period | Total of 7 surface water gauges: One gauge on UT1 – R2, UT1 – R3, UT1A, UT2, UT3 – R1, UT3 – R2, and UT4 | Surface water data for each monitoring period | | | | | | | | Visual/Physical Evidence | | All restored stream channels | Visual evidence, photo documentation, and/or rain data. | | | | | | | | | Wetland Parame | ters | | | | | | | | Parameter | Method | Schedule/Frequency | Number/Extent | Data Collected/Reported | | | | | | | Wetland Hydrology | Groundwater gauges | Years 1, 2, 3, 4, 5, 6, and 7
throughout the year, with the
growing season defined as
March 1-November 4 | 35 gauges spread throughout restored wetlands and 1 reference gauge within the wetland preservation area | Soil temperature at the beginning of each monitoring period to verify the start of the growing season, groundwater and rain data for each monitoring period | | | | | | | | | Vegetation Param | eters | | | | | | | | Parameter | Method | Schedule/Frequency | Number/Extent | Data Collected/Reported | | | | | | | Vegetation octablishment and viger | Permanent vegetation plots 0.0247
acre (100 square meters) in size; CVS-
EEP Protocol for Recording Vegetation,
Version 4.2 (Lee et al. 2008) | As-built, Years 1, 2, 3, 5, and 7 | 32 plots spread across the Site | Species, height, planted vs. volunteer, stems/acre | | | | | | | establishment and vigor | Annual random vegetation plots,
0.0247 acre (100 square meters) in
size | As-built, Years 1, 2, 3, 5, and 7 | 18 plots randomly selected each year | Species and height | | | | | | #### 3.0 REFERENCES - Griffith, G.E., JM Omernik, J.A. Comstock, M.P. Schafale, W.H. McNab, D.R. Lenat, T.F. MacPherson, J.B. Glover, and VB Shelbourne. 2002. Ecoregions of North Carolina and South Carolina. US Geological Survey, Reston, Virginia. - Lee, M.T., R.K. Peet, SD. Roberts, and T.R. Wentworth. 2008. CVS-EEP Protocol for Recording Vegetation. Version 4.2. North Carolina Department of Environment and Natural Resources, Ecosystem Enhancement Program. Raleigh, North Carolina. - North Carolina Division of Mitigation Services (NCDMS). 2014. Stream and Wetland Mitigation Monitoring Guidelines. North Carolina Department of Environmental Quality, Raleigh, North Carolina. - North Carolina Division of Water Quality (NCDWQ). 2005. Cape Fear River Basinwide Water Quality Plan. Available: - https://deq.nc.gov/about/divisions/water-resources/planning/basin-planning/water-resource-plans/cape-fear-2005 [December 8, 2016]. North Carolina Department of Environment and Natural Resources, Raleigh, North Carolina. - North Carolina Division of Water Resources (NCDWR). 2016. Standard Operating Procedures for Collection and Analysis of Benthic Macroinvertebrates (Version 5.0). (online). Available: https://files.nc.gov/ncdeq/Water%20Quality/Environmental%20Sciences/BAU/NCDWRMacroin-vertebrate-SOP-February%202016 final.pdf - North Carolina Division of Water Quality (NCDWQ). 2009. Small Streams Biocriteria Development. Available: - http://portal.ncdenr.org/c/document_library/get_file?uuid=2d54ad23-0345-4d6e-82fd-04005f48eaa7&groupId=38364 - North Carolina Ecosystem Enhancement Program (NCEEP). 2009. Cape Fear River Basin Restoration Priorities 2009 (online). Available: - http://portal.ncdenr.org/c/document_library/get_file?uuid=864e82e8-725c-415e-8ed9-c72dfcb55012&groupId=60329 - North Carolina Stream Functional Assessment Team. (NC SFAT 2015). N.C. Stream Assessment Method (NC SAM) User Manual. Version 2.1. - North Carolina Wetland Functional Assessment Team. (NC WFAT 2010). NC Wetland Assessment Method (NC WAM) User Manual. Version 4.1. - Schafale, M.P. and A.S. Weakley. 1990. Classification of the Natural Communities of North Carolina: Third Approximation. North Carolina Natural Heritage Program, Division of Parks and Recreation, North Carolina Department of Environment, Health, and Natural Resources. Raleigh, North Carolina. - Simon A, Hupp CR. 1986. Geomorphic and Vegetative Recovery Processes Along Modified Tennessee Streams: An Interdisciplinary Approach to Disturbed Fluvial Systems. Forest Hydrology and Watershed Management. IAHS-AISH Publ.167. - United States Department of Agriculture (USDA). 2016. Web Soil Survey (online). Available: http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx [August 2016]. - United States Department of Agriculture (USDA). 1960. Soil Survey of Alamance County, North Carolina. Soil Conservation Service. ### **APPENDIX A: BACKGROUND TABLES AND MAP** Figure 1. Site Location Table 1. Project Components and Mitigation Units Table 2. Project Activity and Reporting History Table 3. Project Contacts Table Table 4. Project Attributes Table **Table 1. Project Components and Mitigation Credits Alliance Headwaters Restoration Site** | | Alliance neauwal | CIO INCOTO | | | | | | | | |-----------------|------------------------------------|---------------------------------|---|------------------------------------|-------------------|--|---------------------|-----------------------|---| | Reach ID | Stream Stationing/
Wetland Type | Existing
Footage/
Acreage | Mitigation
Plan
Footage/
Acreage | Restoration
Footage/
Acreage | Restoration Level | Restoration
or
Restoration
Equivalent | Mitigation
Ratio | Mitigation
Credits | Comment | | UT 1A | 10+00 to 10+87 | | 87 | 87 | Restoration | 87 | 1:1 | 87 | | | UT 1
Reach 1 | 10+00 to16+71 | | 671 | 671 | Restoration | 671 | 1:1 | 671 | | | UT 1
Reach 2 | 16+71 to 30+33 | 4761 | 1362 | 1362 | Restoration | 1362-70=
1292 | 1:1 | 1292 | 70 feet is outside of the easement and is therefore noncredit generating. | | UT 1
Reach 3 | 10+00 to 24+63 | | 1463 | 1463 | Restoration | 1463-149=
1314 | 1.3:1 | 1011 | 149 feet is outside of the easement and is therefore noncredit generating. | | UT 2 | 10+00 to 19+97 | <1 | 997 | 997 | Restoration | 997-146=
851 | 1.3:1 | 655 | 146 feet either does not have proper buffer width or is outside of the easement and is therefore non-credit generating. | | UT 3
Reach 1 | 10+00 to 16+39 | | 639 | 639 | Restoration | 639 | 1:1 | 639 | | | UT 3
Reach 2 | 16+39 to 29+15 | 3313 | 1276 | 1276 | Restoration | 1276-132=
1144 | 1:1 | 1144 | 132 feet is outside of the easement and is therefore noncredit generating. | | UT 4 | 10+00 to 15+31 | 1142 | 531 | 531 | Restoration | 531 | 1:1 | 531 | | | Wetland
R1 | Riparian Riverine | 0 | 7.11 | 7.108 | Restoration | 7.108 | 1:1 | 7.108 | Wetland Restoration | | Wetland
R2 | Riparian Riverine | 0 | 6.97 | 6.973 | Restoration | 6.973 | 1.3:1 | 5.364 | Wetland Restoration | | Wetland
R3 | Riparian Riverine | 0 | 18.47 | 18.473 | Restoration | 18.473 | 1:1 | 18.473 | Wetland Restoration | | Wetland
R4 | Riparian Riverine | 0 | 0.29 | 0.285 | Restoration | 0.285 | 1:1 | 0.285 | Wetland Restoration | | Wetland
R5 | Riparian Riverine | 0 | 0.95 | 0.950 | Restoration | 0.950 | 1:1 | 0.950 | Wetland Restoration | | Wetland
R6 | Riparian Riverine | 0 | 0.90 | 0.896 | Restoration | 0.896 | 1:1 | 0.896 | Wetland Restoration | | Wetland
R7 | Riparian Riverine | 0 | 0.28 | 0.284 | Restoration | 0.284 | 1:1 | 0.284 | Wetland Restoration | Table 1. Project Components and Mitigation Credits (continued) Alliance Headwaters Restoration Site | Reach ID | Stream Stationing/
Wetland Type |
Existing
Footage/
Acreage | Mitigation
Plan
Footage/
Acreage | Restoration
Footage/
Acreage | Restoration Level | Restoration
or
Restoration
Equivalent | Mitigation
Ratio | Mitigation
Credits | Comment | |----------------|------------------------------------|---------------------------------|---|------------------------------------|-------------------|--|---------------------|-----------------------|----------------------| | Wetland
R8 | Riparian Riverine | 0 | 1.47 | 1.472 | Restoration | 1.472 | 1.3:1 | 1.132 | Wetland Restoration | | Wetland
R9 | Riparian Riverine | 0 | 0.87 | 0.867 | Restoration | 0.867 | 1.3:1 | 0.667 | Wetland Restoration | | Wetland
R10 | Riparian Riverine | 0 | 1.11 | 1.105 | Restoration | 1.105 | 1:1 | 1.105 | Wetland Restoration | | Wetland
R11 | Riparian Riverine | 0 | 0.97 | 0.970 | Restoration | 0.970 | 1:1 | 0.970 | Wetland Restoration | | Wetland
R12 | Riparian Riverine | 0 | 0.17 | 0.170 | Restoration | 0.170 | 1:1 | 0.170 | Wetland Restoration | | Wetland
E1 | Riparian Riverine | 0.38 | 0.38 | 0.384 | Enhancement | 0.384 | 3.25:1 | 0.118 | Wetland Enhancement | | Wetland
C1 | Riparian Riverine | 0 | 0.54 | 0.540 | Creation | 0.540 | 10:1 | 0.054 | Wetland Creation | | Wetland
C2 | Riparian Riverine | 0 | 0.55 | 0.546 | Creation | 0.546 | 13:1 | 0.042 | Wetland Creation | | Wetland
C3 | Riparian Riverine | 0 | 0.90 | 0.901 | Creation | 0.901 | 10:1 | 0.090 | Wetland Creation | | Wetland
P1 | Riparian Riverine | 16.39 | 16.39 | 16.392 | Preservation | 16.392 | 10:1 | 1.639 | Wetland Preservation | | Length & Area Summations by Mitigation Category | | | | | | | |---|-------|--------|--|--|--|--| | Restoration Level Stream (linear footage) Riparian Wetland (acrea | | | | | | | | Restoration | 6529* | 39.553 | | | | | | Enhancement | | 0.384 | | | | | | Creation | | 1.987 | | | | | | Preservation | | 16.392 | | | | | ^{*}An additional 497 linear feet of stream restoration is located outside of the conservation easement and is therefore not included in this total or in mitigation credit calculations. | Overall Assets Summary | | | | | | |---------------------------|-----------------|--|--|--|--| | Asset Category | Overall Credits | | | | | | Stream | 6029.384 | | | | | | Riparian Riverine Wetland | 39.354 | | | | | **Table 2. Project Activity and Reporting History Alliance Headwaters Restoration Site** | Activity or Deliverable | Data Collection
Complete | Completion or Delivery | |---|--------------------------------|----------------------------| | Technical Proposal (RFP No. 16-006477) | October 15, 2015 | October 28, 2015 | | Institution Date (NCDMS Contract No. 6832) | | March 21, 2016 | | 404 Permit | | December 3, 2018 | | Mitigation Plan | | October 12, 2018 | | Construction Plans | | October 12, 2018 | | Site Construction | | May 13, 2019-July 31, 2019 | | Planting | | January 16, 2020 | | As-built Baseline Stream Data Collection | December 11-16, 2019 | | | As-built Baseline Vegetation Data Collection | January 16-17, 2020 | | | As-built Baseline Monitoring (MY0) | October 2019 –
January 2020 | March 2020 | | Monitoring Year 1 (2020) Stream Data Collection | July 23, 2020 | - | | Monitoring Year 1 (2020) Vegetation Data Collection | July 27-28, 2020 | | | Monitoring Year 1 (MY1) | January-November
2020 | January 2021 | | Monitoring Year 2 (2021) Stream Data Collection | March 10, 2021 | | | Monitoring Year 2 (2021) Vegetation Data Collection | July 6, 2021 | | | Monitoring Year 2 (MY2) | January-November,
2021 | December 2021 | # Table 3. Project Contacts Table Alliance Headwaters Mitigation Site | Full Delivery Provider | Construction Contractor | |-----------------------------------|---------------------------------------| | Restoration Systems | Land Mechanic Designs | | 1101 Haynes Street, Suite 211 | 780 Landmark Road | | Raleigh, North Carolina 27604 | Willow Spring, NC 27592 | | Worth Creech 919-755-9490 | Lloyd Glover 919-639-6132 | | Designer, Construction Plans, and | Planting Contractor | | Sediment/Erosion Control Plans | Restoration Systems | | | 1101 Haynes Street, Suite 211 | | Ecosystem Planning & Restoration | Raleigh, North Carolina 27604 | | 1150 SE Maynard Road, Suite 140 | Josh Merritt 919-755-9490 | | Cary, NC 27511 | | | Kevin Tweedy, PE | | | 919-999-0262 | | | As-built Surveyor | Baseline & Monitoring Data Collection | | K2 Design Group | Axiom Environmental, Inc. | | 5688 US Highway 70 East | 218 Snow Avenue | | Goldsboro, NC 27534 | Raleigh, NC 27603 | | John Rudolph 919-751-0075 | Grant Lewis 919-215-1693 | Table 4. Project Attribute Table Alliance Headwaters Mitigation Site | Alliance Headwaters Mitigation Si | | roject Informatio | on | | | | | |--|--|--------------------|--------------------|----------------------------|----------------------------|--|--| | Project Name | · | | | aters Mitigation Sit | Δ | | | | Project County | | | | nty, North Carolina | | | | | Project Area (acres) | | | | 71.7 | | | | | Project Coordinates (latitude & latitu | ıda) | | | | | | | | Planted area (acres) | lue) | | | N, 78.340514ºW | | | | | Figure area (acres) | Droiget Wet |
ershed Summary | | 49.9 | | | | | Physiographic Province | Project wat | ersned Summary | | | | | | | , <u> </u> | | | | stal Plain | | | | | Project River Basin | | | | leuse | | | | | USGS HUC for Project (14-digit) | | | | 201150020 | | | | | NCDWR Sub-basin for Project | · | | | | | | | | Project Drainage Area (acres) | | | 132 | 2 to 546 | | | | | Percentage of Project Drainage Area
Impervious | that is | | | <2% | | | | | CGIA Land Use Classification | | | Agriculture & F | orested/Scrubland | I | | | | | Reach | Summary Inform | nation | | | | | | Parameters | UT1 | UT1A | UT2 | UT 3 | UT4 | | | | Length of reach (linear feet) | 3495 | 87 | 997 | 1915 | 531 | | | | Valley Classification & Confinement | | | Alluvial, unconfi | ned | | | | | Drainage Area (acres) | 546 | 6.4 | 147 | 354 | 132 | | | | NCDWR Stream ID Score | Blue Line | NA | Blue Line | 27.25 | 27.25 | | | | Perennial, Intermittent, Ephemeral | Perennial | Intermittent | Perennial | Perennial/
Intermittent | Perennial/
Intermittent | | | | NCDWR Water Quality
Classification | | , | C, NSW | | | | | | Proposed Stream Classification
(Rosgen 1996) | C5 | C5 | C5 | C5 | C5 | | | | Underlying Mapped Soils | | | Leaf silt loam | 1 | | | | | Drainage Class | | | Poorly-draine | d | | | | | Hydric Soil Status | | | Hydric | | | | | | FEMA Classification | | | ,
NA | | | | | | Native Vegetation Community | | Coasta | l Plain Small Stre | am Swamp | | | | | Watershed Land Use/Land Cover (Site) | 31% forest,67% agricultural land, <2% low density residential/impervious surface | | | | | | | | Percent Composition of Exotic
Invasive Vegetation | | | <2% | | | | | ### **APPENDIX B: VISUAL ASSESSMENT DATA** Figures 2 & 2A-2B. Current Conditions Plan View Tables 5A-5H. Visual Stream Morphology Stability Assessment Table 6. Vegetation Condition Assessment Vegetation Plot Photographs Table 5A <u>Visual Stream Morphology Stability Assessment</u> Reach ID Alliance UT-1 Reach 1 671 | Major
Channel
Category | Channel
Sub-Category | Metric | Number
Stable,
Performing
as Intended | Total
Number in
As-built | Number of
Unstable
Segments | Amount of
Unstable
Footage | % Stable,
Performing
as Intended | Number with
Stabilizing
Woody
Vegetation | Footage
with
Stabilizing
Woody
Vegetation | Adjusted %
for
Stabilizing
Woody
Vegetation | |------------------------------|---|---|--|--------------------------------|-----------------------------------|----------------------------------|--|---|---|---| | 1. Bed | Vertical Stability (Riffle and Run units) | Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) | | | 0 | 0 | 100% | | | | | | | Degradation - Evidence of downcutting | | | 0 | 0 | 100% | | | | | | 2. Riffle Condition | Texture/Substrate - Riffle maintains coarser substrate | 14 | 14 | | | 100% | | | | | | 3. Meander Pool
Condition | Depth Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6) | 13 | 13 | | | 100% | | | | | | | Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) | 13 | 13 | | | 100% | | | | | | 4.Thalweg Position | Thalweg centering at upstream of meander bend (Run) | 13 | 13 | | | 100% | | | | | | | Thalweg centering at downstream of meander (Glide) | 13 | 13 | | | 100% | | | | | | | | | | | | | | | | | 2. Bank | 1. Scoured/Eroding | Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion | | | 0 | 0 | 100% | | | 100% | | | 2. Undercut | Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat. | | | 0 | 0 | 100% | | | 100% | | | 3. Mass Wasting | Bank slumping, calving, or collapse | | | 0 | 0 | 100% | | | 100% | | | | | | Totals | 0 | 0 | 100% | 0 | 0 | 100% | | 3. Engineered
Structures | 1. Overall Integrity
 Structures physically intact with no dislodged boulders or logs. | 13 | 13 | | | 100% | | | | | | 2. Grade Control | Grade control structures exhibiting maintenance of grade across the sill. | 13 | 13 | | | 100% | | | | | | 2a. Piping | Structures lacking any substantial flow underneath sills or arms. | 13 | 13 | | | 100% | | | | | | 3. Bank Protection | Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document) | 13 | 13 | | | 100% | | | | | | 4. Habitat | Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow. | 13 | 13 | | | 100% | | | | Table 5B Visual Stream Morphology Stability Assessment Reach ID Alliance UT-1 Reach 2 Assessed Length 1373 | Major
Channel
Category | Channel
Sub-Category | Metric | Number
Stable,
Performing
as Intended | Total
Number in
As-built | Number of
Unstable
Segments | Amount of
Unstable
Footage | % Stable,
Performing
as Intended | Number with
Stabilizing
Woody
Vegetation | Footage
with
Stabilizing
Woody
Vegetation | Adjusted %
for
Stabilizing
Woody
Vegetation | |------------------------------|---|---|--|--------------------------------|-----------------------------------|----------------------------------|--|---|---|---| | 1. Bed | Vertical Stability (Riffle and Run units) | Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) | | | 0 | 0 | 100% | | | | | | | Degradation - Evidence of downcutting | | | 0 | 0 | 100% | | | | | | 2. Riffle Condition | Texture/Substrate - Riffle maintains coarser substrate | 27 | 27 | | | 100% | | | | | | 3. Meander Pool
Condition | Depth Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6) | 28 | 28 | | | 100% | | | | | | | Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) | 28 | 28 | | | 100% | | | | | | 4.Thalweg Position | Thalweg centering at upstream of meander bend (Run) | 28 | 28 | | | 100% | | | | | | | Thalweg centering at downstream of meander (Glide) | 28 | 28 | | | 100% | | | | | | | | | | | | | | | | | 2. Bank | 1. Scoured/Eroding | Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion | | | 0 | 0 | 100% | | | 100% | | | 2. Undercut | Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat. | | | 0 | 0 | 100% | | | 100% | | | 3. Mass Wasting | Bank slumping, calving, or collapse | | | 0 | 0 | 100% | | | 100% | | | | | | Totals | 0 | 0 | 100% | 0 | 0 | 100% | | 3. Engineered
Structures | 1. Overall Integrity | Structures physically intact with no dislodged boulders or logs. | 25 | 25 | | | 100% | | | | | | 2. Grade Control | Grade control structures exhibiting maintenance of grade across the sill. | 25 | 25 | | | 100% | | | | | | 2a. Piping | Structures lacking any substantial flow underneath sills or arms. | 25 | 25 | | | 100% | | | | | | 3. Bank Protection | Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document) | 25 | 25 | | | 100% | | | | | | 4. Habitat | Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow. | 25 | 25 | | | 100% | | | | Table 5C <u>Visual Stream Morphology Stability Assessment</u> Reach ID Alliance UT-1 Reach 3 Assessed Length 1451 | Major
Channel
Category | Channel
Sub-Category | Metric | Number
Stable,
Performing
as Intended | Total
Number in
As-built | Number of
Unstable
Segments | Amount of
Unstable
Footage | % Stable,
Performing
as Intended | Number with
Stabilizing
Woody
Vegetation | Footage
with
Stabilizing
Woody
Vegetation | Adjusted %
for
Stabilizing
Woody
Vegetation | |------------------------------|---|---|--|--------------------------------|-----------------------------------|----------------------------------|--|---|---|---| | 1. Bed | Vertical Stability (Riffle and Run units) | Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) | | | 0 | 0 | 100% | | | | | | | Degradation - Evidence of downcutting | | | 0 | 0 | 100% | | | | | | 2. Riffle Condition | Texture/Substrate - Riffle maintains coarser substrate | 20 | 20 | | | 100% | | | | | | 3. Meander Pool
Condition | 1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6) | 19 | 19 | | | 100% | | | | | | | Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) | 19 | 19 | | | 100% | | | | | | 4.Thalweg Position | Thalweg centering at upstream of meander bend (Run) | 19 | 19 | | | 100% | | | | | | | Thalweg centering at downstream of meander (Glide) | 19 | 19 | | | 100% | | | | | | | | | | | | | | | | | 2. Bank | 1. Scoured/Eroding | Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion | | | 0 | 0 | 100% | | | 100% | | | 2. Undercut | Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat. | | | 0 | 0 | 100% | | | 100% | | | 3. Mass Wasting | Bank slumping, calving, or collapse | | | 0 | 0 | 100% | | | 100% | | | | | | Totals | 0 | 0 | 100% | 0 | 0 | 100% | | 3. Engineered
Structures | 1. Overall Integrity | Structures physically intact with no dislodged boulders or logs. | 18 | 18 | | | 100% | | | | | | 2. Grade Control | Grade control structures exhibiting maintenance of grade across the sill. | 18 | 18 | | | 100% | | | | | | 2a. Piping | Structures lacking any substantial flow underneath sills or arms. | 18 | 18 | | | 100% | | | | | | 3. Bank Protection | Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document) | 18 | 18 | | | 100% | | | | | | 4. Habitat | Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow. | 18 | 18 | | | 100% | | | | Table 5D Reach ID Assessed Length Visual Stream Morphology Stability Assessment Alliance UT-1A 87 | Major
Channel
Category | Channel
Sub-Category | Metric | Number
Stable,
Performing
as Intended | Total
Number in
As-built | Number of
Unstable
Segments | Amount of
Unstable
Footage | % Stable,
Performing
as Intended | Number with
Stabilizing
Woody
Vegetation | Footage
with
Stabilizing
Woody
Vegetation | Adjusted % for Stabilizing Woody Vegetation | |------------------------------|---|---|--|--------------------------------|-----------------------------------|----------------------------------|--|---|---|---| | 1. Bed | Vertical Stability (Riffle and Run units) | Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) | | | 0 | 0 | 100% | | | | | | | Degradation - Evidence of downcutting | | | 0 | 0 | 100% | | | | | | 2. Riffle Condition | Texture/Substrate - Riffle maintains coarser substrate | 3 | 3 | | | 100% | | | | | | 3. Meander Pool
Condition | 1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6) | 2 | 2 | | | 100% | | | | | | | Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) | 2 | 2 | | | 100% | | | | | | 4.Thalweg Position | Thalweg centering at upstream of meander bend (Run) | 2 | 2 | | | 100% | | | | | | | Thalweg centering at downstream of meander (Glide) | 2 | 2 | | | 100% | | | | | | | | | | | | | | | | | 2. Bank | 1. Scoured/Eroding | Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion | | | 0 | 0 | 100% | | | 100% | | | 2. Undercut | Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat. | | | 0 | 0 | 100% | | | 100% | | | 3. Mass Wasting | Bank slumping, calving, or collapse | | | 0 | 0 | 100% | | | 100% | | | | | | Totals | 0 | 0 | 100% | 0 | 0 | 100% | | 3. Engineered
Structures | 1. Overall Integrity | Structures physically intact with no dislodged boulders or logs. | 2 | 2 | | | 100% | | | | | | 2. Grade
Control | Grade control structures exhibiting maintenance of grade across the sill. | 2 | 2 | | | 100% | | | | | | 2a. Piping | Structures lacking any substantial flow underneath sills or arms. | 2 | 2 | | | 100% | | | | | | 3. Bank Protection | Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document) | 2 | 2 | | | 100% | | | | | | 4. Habitat | Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio > 1.6 Rootwads/logs providing some cover at base-flow. | 2 | 2 | | | 100% | | | | Table 5E Visual Stream Morphology Stability Assessment Reach ID Alliance UT-2 Assessed Length 997 | Major
Channel
Category | Channel
Sub-Category | Metric | Number
Stable,
Performing
as Intended | Total
Number in
As-built | Number of
Unstable
Segments | Amount of
Unstable
Footage | % Stable,
Performing
as Intended | Number with
Stabilizing
Woody
Vegetation | Footage
with
Stabilizing
Woody
Vegetation | Adjusted %
for
Stabilizing
Woody
Vegetation | |------------------------------|---|---|--|--------------------------------|-----------------------------------|----------------------------------|--|---|---|---| | 1. Bed | Vertical Stability (Riffle and Run units) | Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) | | | 0 | 0 | 100% | | | | | | | Degradation - Evidence of downcutting | | | 0 | 0 | 100% | | | | | | 2. Riffle Condition | Texture/Substrate - Riffle maintains coarser substrate | 15 | 15 | | | 100% | | | | | | 3. Meander Pool
Condition | Depth Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6) | 14 | 14 | | | 100% | | | | | | | Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) | 14 | 14 | | | 100% | | | | | | 4.Thalweg Position | Thalweg centering at upstream of meander bend (Run) | 14 | 14 | | | 100% | | | | | | | Thalweg centering at downstream of meander (Glide) | 14 | 14 | | | 100% | | | | | | | | | | | | | | | | | 2. Bank | 1. Scoured/Eroding | Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion | | | 0 | 0 | 100% | | | 100% | | | 2. Undercut | Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat. | | | 0 | 0 | 100% | | | 100% | | | 3. Mass Wasting | Bank slumping, calving, or collapse | | | 0 | 0 | 100% | | | 100% | | | | | | Totals | 0 | 0 | 100% | 0 | 0 | 100% | | 3. Engineered
Structures | 1. Overall Integrity | Structures physically intact with no dislodged boulders or logs. | 14 | 14 | | | 100% | | | | | | 2. Grade Control | Grade control structures exhibiting maintenance of grade across the sill. | 14 | 14 | | | 100% | | | | | | 2a. Piping | Structures lacking any substantial flow underneath sills or arms. | 14 | 14 | | | 100% | | | | | | 3. Bank Protection | Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document) | 14 | 14 | | | 100% | | | | | | 4. Habitat | Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio > 1.6 Rootwads/logs providing some cover at base-flow. | 14 | 14 | | | 100% | | | | Table 5F Reach ID Assessed Length Visual Stream Morphology Stability Assessment Alliance UT-3 Reach 1 639 | Major
Channel
Category | Channel
Sub-Category | Metric | Number
Stable,
Performing
as Intended | Total
Number in
As-built | Number of
Unstable
Segments | Amount of
Unstable
Footage | % Stable,
Performing
as Intended | Number with
Stabilizing
Woody
Vegetation | Footage
with
Stabilizing
Woody
Vegetation | Adjusted %
for
Stabilizing
Woody
Vegetation | |------------------------------|---|---|--|--------------------------------|-----------------------------------|----------------------------------|--|---|---|---| | 1. Bed | Vertical Stability (Riffle and Run units) | Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) | | | 0 | 0 | 100% | | | | | | | Degradation - Evidence of downcutting | | | 0 | 0 | 100% | | | | | | 2. Riffle Condition | Texture/Substrate - Riffle maintains coarser substrate | 11 | 11 | | | 100% | | | | | | 3. Meander Pool
Condition | Depth Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6) | 11 | 11 | | | 100% | | | | | | | Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) | 11 | 11 | | | 100% | | | | | | 4.Thalweg Position | Thalweg centering at upstream of meander bend (Run) | 11 | 11 | | | 100% | | | | | | | Thalweg centering at downstream of meander (Glide) | 11 | 11 | | | 100% | | | | | | | | | | | | | | | | | 2. Bank | 1. Scoured/Eroding | Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion | | | 0 | 0 | 100% | | | 100% | | | 2. Undercut | Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat. | | | 0 | 0 | 100% | | | 100% | | | 3. Mass Wasting | Bank slumping, calving, or collapse | | | 0 | 0 | 100% | | | 100% | | | | | | Totals | 0 | 0 | 100% | 0 | 0 | 100% | | 3. Engineered
Structures | 1. Overall Integrity | Structures physically intact with no dislodged boulders or logs. | 11 | 11 | | | 100% | | | | | | 2. Grade Control | Grade control structures exhibiting maintenance of grade across the sill. | 11 | 11 | | | 100% | | | | | | 2a. Piping | Structures lacking any substantial flow underneath sills or arms. | 11 | 11 | | | 100% | | | | | | 3. Bank Protection | Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document) | 11 | 11 | | | 100% | | | | | | 4. Habitat | Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio > 1.6 Rootwads/logs providing some cover at base-flow. | 11 | 11 | | | 100% | | | | Table 5G Visual Stream Morphology Stability Assessment Reach ID Alliance UT-3 Reach 2 Assessed Length 1276 | Major
Channel
Category | Channel
Sub-Category | Metric | Number
Stable,
Performing
as Intended | Total
Number in
As-built | Number of
Unstable
Segments | Amount of
Unstable
Footage | % Stable,
Performing
as Intended | Number with
Stabilizing
Woody
Vegetation | Footage
with
Stabilizing
Woody
Vegetation | Adjusted %
for
Stabilizing
Woody
Vegetation | |------------------------------|---|---|--|--------------------------------|-----------------------------------|----------------------------------|--|---|---|---| | 1. Bed | Vertical Stability (Riffle and Run units) | Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) | | | 0 | 0 | 100% | | | | | | | Degradation - Evidence of downcutting | | | 0 | 0 | 100% | | | | | | 2. Riffle Condition | Texture/Substrate - Riffle maintains coarser substrate | 19 | 19 | | | 100% | | | | | | 3. Meander Pool
Condition | Depth Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6) | 19 | 19 | | | 100% | | | | | | | Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) | 19 | 19 | | | 100% | | | | | | 4.Thalweg Position | Thalweg centering at upstream of meander bend (Run) | 19 | 19 | | | 100% | | | | | | | Thalweg centering at downstream of meander (Glide) | 19 | 19 | | | 100% | | | | | | | | | | | | | | | | | 2. Bank | 1. Scoured/Eroding | Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion | | | 0 | 0 | 100% | | | 100% | | | 2. Undercut | Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat. | | | 0 | 0 | 100% | | | 100% | | | 3. Mass Wasting | Bank slumping, calving, or collapse | | | 0 | 0 | 100% | | | 100% | | | | | | Totals | 0 | 0 | 100% | 0 | 0 | 100% | | 3. Engineered
Structures | 1. Overall Integrity | Structures physically intact with no dislodged boulders or logs. | 18 | 18 | | | 100% | | | | | | 2. Grade Control | Grade control structures exhibiting maintenance of grade across the sill. | 18 | 18 | | | 100% | | | | |
| 2a. Piping | Structures lacking any substantial flow underneath sills or arms. | 18 | 18 | | | 100% | | | | | | 3. Bank Protection | Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document) | 18 | 18 | | | 100% | | | | | | 4. Habitat | Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio > 1.6 Rootwads/logs providing some cover at base-flow. | 18 | 18 | | | 100% | | | | Table 5H Visual Stream Morphology Stability Assessment Reach ID Alliance UT-4 531 | Assessed | l enath | |------------------|---------| | Magazaacu | Lengui | | Major
Channel
Category | Channel
Sub-Category | Metric | Number
Stable,
Performing
as Intended | Total
Number in
As-built | Number of
Unstable
Segments | Amount of
Unstable
Footage | % Stable,
Performing
as Intended | Number with
Stabilizing
Woody
Vegetation | Stabilizing
Woody | Adjusted %
for
Stabilizing
Woody
Vegetation | |------------------------------|---|--|--|--------------------------------|-----------------------------------|----------------------------------|--|---|----------------------|---| | 1. Bed | Vertical Stability (Riffle and Run units) | Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) | | | 0 | 0 | 100% | | | | | | | 2. <u>Degradation</u> - Evidence of downcutting | | | 0 | 0 | 100% | | | | | | 2. Riffle Condition | Texture/Substrate - Riffle maintains coarser substrate | 9 | 9 | | | 100% | | | | | | 3. Meander Pool Condition | 1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6) | 9 | 9 | | | 100% | | | | | | | 2. <u>Length</u> appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) | 9 | 9 | | | 100% | | | | | | 4.Thalweg Position | Thalweg centering at upstream of meander bend (Run) | 9 | 9 | | | 100% | | | | | | | Thalweg centering at downstream of meander (Glide) | 9 | 9 | | | 100% | | | | | | | | | | | | | | | | | 2. Bank | 1. Scoured/Eroding | Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion | | | 0 | 0 | 100% | | | 100% | | | 2. Undercut | Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat. | | | 0 | 0 | 100% | | | 100% | | | 3. Mass Wasting | Bank slumping, calving, or collapse | | | 0 | 0 | 100% | | | 100% | | | | | | Totals | 0 | 0 | 100% | 0 | 0 | 100% | | 3. Engineered
Structures | 1. Overall Integrity | Structures physically intact with no dislodged boulders or logs. | 9 | 9 | | | 100% | | | | | | 2. Grade Control | Grade control structures exhibiting maintenance of grade across the sill. | 9 | 9 | | | 100% | | | | | | 2a. Piping | Structures lacking any substantial flow underneath sills or arms. | 9 | 9 | | | 100% | | | | | | 3. Bank Protection | Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document) | 9 | 9 | | | 100% | | | | | | 4. Habitat | Pool forming structures maintaining \sim Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow. | 9 | 9 | | | 100% | | | | ## Table 6 # **Vegetation Condition Assessment** ## **Alliance Headwaters** Planted Acreage 49.9 | Tiantoa /toroago | 40.0 | | | | | | |--|----------------|----------------------|-------------------|--------------------|---------------------|----------------------------| | Vegetation Category | Definitions | Mapping
Threshold | CCPV
Depiction | Number of Polygons | Combined
Acreage | % of
Planted
Acreage | | 1. Bare Areas | None | 0.1 acres | none | 0 | 0.00 | 0.0% | | 2. Low Stem Density Areas | None | 0.1 acres | none | 0 | 0.00 | 0.0% | | 2B. Low Planted Stem Density Areas | None | 0.1 acres | none | 0 | 0.00 | 0.0% | | | | | Total | 0 | 0.00 | 0.0% | | 3. Areas of Poor Growth Rates or Vigor | None | 0.25 acres | none | 0 | 0.00 | 0.0% | | | mulative Total | 0 | 0.00 | 0.0% | | | | _ | | _ | | |-------|------|-------|-----| | Easem | nent | Acrea | aae | 71.7 | Vegetation Category | Definitions | Mapping
Threshold | CCPV
Depiction | Number of
Polygons | Combined
Acreage | % of
Easement
Acreage | |---|-------------|----------------------|-------------------|-----------------------|---------------------|-----------------------------| | 4. Invasive Areas of Concern ⁴ | None | 1000 SF | none | 0 | 0.00 | 0.0% | | | | | | | | | | 5. Easement Encroachment Areas ³ | None | none | none | 0 | 0.00 | 0.0% | ^{1 =} Enter the planted acreage within the easement. This number is calculated as the easement acreage minus any existing mature tree stands that were not subject to supplemental planting of the understory, the channel acreage, crossings or any other elements not directly planted as part of the project effort. ^{2 =} The acreage within the easement boundaries. ^{3 =} Encroachment may occur within or outside of planted areas and will therefore be calculated against the overall easement acreage. In the event a polygon is cataloged into items 1, 2 or 3 in the table and is the result of encroachment, the associated acreage should be tallied in the relevant item (i.e., item 1,2 or 3) as well as a parallel tally in item 5. ^{4 =} Invasives may occur in or out of planted areas, but still within the easement and will therefore be calculated against the overall easement acreage. Invasives of concern/interest are listed below. The list of high concern spoies are those with the potential to directly outcompete native, young, woody stems in the short-term (e.g. monitoring period or shortly thereafter) or affect the community structure for existing, more established tree/shrub stands over timeframes that are slightly longer (e.g. 1-2 decades). The low/moderate concern group are those species that generally do not have this capacity over the timeframes discussed and therefore are not expected to be mapped with regularity, but can be mapped, if in the judgement of the observer their coverage, density or distribution is suppressing the viability, or growth of planted woody stems. Decisions as to whether remediation will be needed are based on the integration of risk factors by DMS such as species present, their coverage, distribution relative to native biomass, and the practicality of treatment. For example, even modest amounts of Kudzu or Japanese Knotweed early in the herb layer will not likley trigger control because of the limited capacities to impact tree/shrub layers within the timeframes discussed and the potential impacts of treating extensive amounts of ground cover. Those species with the "watch list" designator in gray shade are of interest as well, but have yet to be observed across the state with any frequency. Those in *red italics* are of particular interest given their extreme risk/threat level for mapping as points where isolated specimens are found, particularly ealry in a projects monitoring history. However, areas of discreet, dense patches will of course be mapped as polygons. The symbology scheme below was one that was found to be helpful for symbolzing invasives polygons, particularly for situations where the condition for an area is somewhere between isolated specimens and dense, discreet patches. In any case, the poin # Alliance Headwaters MY-02 (2021) Vegetation Monitoring Photographs Taken July 2021 # Alliance Headwaters MY-02 (2021) Vegetation Monitoring Photographs (continued) Taken July 2021 # Alliance Headwaters MY-02 (2021) Vegetation Monitoring Photographs (continued) Taken July 2021 ## Alliance Headwaters MY-02 (2021) Vegetation Monitoring Photographs (continued) Taken July 2021 ## Alliance Headwaters MY-02 (2021) Vegetation Monitoring Photographs (continued) Taken July 2021 # Alliance Headwaters MY-02 (2021) Vegetation Monitoring Photographs (continued) Taken July 2021 ### **APPENDIX C: VEGETATION DATA** - Table 7. Planted Bare Root Woody Vegetation - Table 8. Total Stems by Plot and Species - Table 9. Temporary Vegetation Plot Data - Table 10. MY2 Planted Vegetation Totals - Table 11. MY2 Temporary Vegetation Plot Planted Vegetation Totals **Table 7. Planted Bare Root Woody Vegetation Alliance Headwaters Mitigation Site** | Species | Upland
Planting | Riparian
Planting | Total Stems | |-------------------------|--------------------|----------------------|-------------| | Betula Nigra | 0 | 2,900 | 2,900 | | Morella cerifera | 0 | 1,300 | 1,300 | | Carpinus caroliniana | 300 | 0 | 300 | | Diospyros virginiana | 100 | 0 | 100 | | Liriodendron tulipifera | 500 | 2,800 | 3,300 | | Magnolia virginiana | 0 | 1,600 | 1,600 | | Morus rubra | 100 | 0 | 100 | | Nyssa sylvatica | 700 | 300 | 1,000 | | Persea palustris | 0 | 800 | 800 | | Prunus serotina | 400 | 0 | 400 | | Quercus alba | 800 | 0 | 800 | | Quercus bicolor | 0 | 500 | 500 | | Quercus laurifolia | 0 | 2,000 | 2,000 | | Quercus shumardii | 0 | 200 | 200 | | Quercus lyrata | 0 | 4,200 | 4,200 | | Quercus michauxii | 800 | 3,900 | 4,700 | | Quercus pagoda | 650 | 3,050 | 3,700 | | Taxodium distichum | 0 | 4,500 | 4,500 | | Ulmus americana | 0 | 2,800 | 2,800 | | | 4,350 | 30,850 | 35,200 | ^{*}Some species planted on-site were not included in the mitigation plan, including *Morella cerifera*, *Morus
rubra*, *Quercus bicolor*, and *Quercus shumardii*. These were determined to be viable substitutions that were made based on bare-root stem availability at the time of site planting. Table 8. Planted Stems by Plot and Species CVS Project Code 18035. Project Name: Alliance Headwaters | | | | | | | | | | | | | | | | | | | Curren | t Plot D | ata (MY | 2 2021) | | | | | | | | | | | | | |-------------------------|--------------------|----------------|-------|---------|-----|-------|--------|-------|-------|----------|------|-------|--------|-------|---------|----------|-------|--------------------|----------|---------|-----------|------|----------|---------|--------|---------------|-------|-----------|------|-------|-------------|-----------|---------------| | | | | 180 | 35-01-0 | 001 | 1803 | 5-01-0 | 002 | 180 | 35-01-00 | 03 | 180 | 35-01- | -0004 | 18 | 035-01-0 | 0005 | 18035-01- | 0006 | 1803 | 35-01-000 | 7 | 18035- | 01-0008 | 18 | 035-01-0009 | 180 | 35-01-001 | 0 | 1803 | 5-01-0011 | 18035-0 | 1-0012 | | Scientific Name | Common Name | Species Type | PnoLS | P-all | Т | PnoLS | P-all | Т | PnoLS | P-all T | | PnoLS | P-all | Т | PnoLS | P-all | Т | PnoLS P-all | Т | PnoLS | P-all T | P | noLS P-a | II T | PnoL | S P-all T | PnoLS | P-all T | P | noLS | P-all T | PnoLS P-a | I T | | Acer rubrum | red maple | Tree | Baccharis halimifolia | eastern baccharis | Shrub | Betula nigra | river birch | Tree | 1 | 1 | 1 | 4 | 4 | 4 | 1 | 1 | 1 | | | | 2 | 2 2 | 2 | 3 3 | 3 | 2 | 2 | 2 | | | | | | | | | | | | | Carpinus caroliniana | American hornbeam | Tree | Cornus amomum | silky dogwood | Shrub | Diospyros virginiana | common persimmon | Tree | Liquidambar styraciflua | sweetgum | Tree | | | | | | | | | | | | | 1 | | | | 1 | | | | | | | | | | | | | | | | Liriodendron tulipifera | tuliptree | Tree | | | | | | | 6 | 6 | 6 | | | | | | | | | | | | | | | 1 1 1 | . 1 | 1 | 1 | | | | | | Magnolia virginiana | sweetbay | Tree | 3 | 3 | 3 | 2 | 2 | 2 | Morella cerifera | wax myrtle | shrub | | | | 2 | 2 | 2 | 3 | 3 | 3 | | | | | | | | | | | | | | | 1 1 1 | . 2 | 2 | 2 | | | | | | Nyssa | tupelo | Tree | 1 | 1 | 1 | | | | | | | | | | Nyssa sylvatica | blackgum | Tree | | | | | | | | | | | | | | | | 1 1 | . 1 | | | | | | | | | | | | | | | | Persea palustris | swamp bay | tree | | | | | | | | | | | | | | | | 2 2 | . 2 | | | | | | | 1 1 1 | | | | | | | | | Pinus taeda | loblolly pine | Tree | Prunus serotina | black cherry | Tree | | | | | | | | | | | | | | | | 1 1 | . 1 | | | | | | | | | | | | | | | | Quercus | oak | Tree | 1 | 1 | 1 | 2 | 2 | 2 | | | | 5 | į | 5 | 5 | | | 1 1 | . 1 | . 8 | 8 | 8 | 1 | 1 | 1 | | 3 | 3 | 3 | | | 3 | 3 : | | Quercus alba | white oak | Tree | | | | | | | | | | 1 | : | 1 | 1 | | | | | 1 | 1 | 1 | | | | | | | | | | | | | Quercus bicolor | swamp white oak | Tree | Quercus lyrata | overcup oak | Tree | 1 1 1 | | | | | | | | | Quercus michauxii | swamp chestnut oak | Tree | 4 | 4 | 4 | | | | 1 | 1 | 1 | | | | 2 | 2 2 | . 2 | 1 1 | . 1 | . 6 | 6 | 6 | 5 | 5 | 5 | | 3 | 3 | 3 | 6 | 6 6 | | | | Quercus nigra | water oak | Tree | | | | | | | | | | 5 | į | 5 | 5 | | | 2 2 | . 2 | | | | | | | 7 7 7 | , | | | | | 1 | 1 : | | Quercus pagoda | cherrybark oak | Tree | | | | | | | 1 | 1 | 1 | | | | : | 1 1 | . 1 | | | | | | 1 | 1 | 1 | 1 1 1 | | | | 2 | 2 2 | 2 | 2 : | | Quercus phellos | willow oak | Tree | | | | 1 | 1 | 1 | | | | | | | | | | 2 2 | . 2 | | | | | | | 1 1 1 | | | | | | | | | Taxodium distichum | bald cypress | Tree | | | | | | | | | | 5 | į | 5 | 5 8 | 8 | 8 | 3 3 | 3 | 2 | 2 | 2 | 1 | 1 | 1 | 1 1 1 | . 2 | 2 | 2 | 4 | 4 4 | 5 | 5 ! | | Ulmus americana | American elm | Tree | 6 | 6 | 6 | | | | 13 | 13 | 13 | | | | 1 | 1 1 | . 1 | | | | | | | | | | | | | | | | | | Unknown | | Shrub or Tree | 1 | 1 | 1 | | | | | | | | | | | | Stem count | 15 | 15 | 15 | 11 | 11 | 11 | 25 | 25 | 25 | 16 | 16 | 6 1 | 7 14 | 14 | 14 | 16 16 | 17 | 19 | 19 | 19 | 10 | 10 1 | .0 1 | 4 14 14 | - 11 | 11 | 11 | 12 | 12 12 | 11 | 11 11 | | | | size (ares) | | 1 | | | 1 | | | 1 | | | 1 | | | 1 | | 1 | | | 1 | | | 1 | | 1 | | 1 | | | 1 | 1 | | | | | size (ACRES) | | 0.02 | | | 0.02 | | | 0.02 | | | 0.02 | | | 0.02 | | 0.02 | | | 0.02 | | 0. | 02 | | 0.02 | | 0.02 | | | 0.02 | 0.0 |)2 | | | | Species count | 5 | 5 | 5 | 5 | 5 | 5 | 6 | 6 | 6 | 4 | . 4 | 4 | 5 5 | 5 5 | 5 | 9 9 | 10 | 5 | 5 | 5 | 6 | 6 | 6 | 8 8 8 | 5 | 5 | 5 | 3 | 3 3 | 4 | 4 / | | | | Stems per ACRE | 607 | 607 | 607 | 445.2 | 445.2 | 445.2 | 1012 | 1012 | 1012 | 647.5 | 647.5 | 5 68 | 8 566.6 | 566.6 | 566.6 | 647.5 647.5 | 688 | 768.9 | 768.9 7 | 68.9 | 404.7 40 | 404 | 7 566. | 6 566.6 566.6 | 445.2 | 445.2 44 | 15.2 | 485.6 | 485.6 485.6 | 445.2 44 | 5.2 445.2 | | alanda Barah | $\overline{}$ | ### Color for Density Exceeds requirements by 10% Exceeds requirements, but by less than 10% Fails to meet requirements, by less than 10% Fails to meet requirements by more than 10% PnoLS = Planted excluding livestakes P-all = Planted including livestakes T = All planted and natural recruits including livestakes T includes natural recruits Table 8. Planted Stems by Plot and Species (continued) CVS Project Code 18035. Project Name: Alliance Headwaters | | | | | | | | | | | | | | | | | | | Curren | t Plot D | ata (MY2 | 2 2021) | | | | | | | | | | | | | | |-------------------------|--------------------|----------------|-------|---------|-------|---------|--------|-------|-------|----------|-------|-------|-------|-------|-------|----------|------|--------------------|----------|----------|----------|-------|-------|---------|-------|-------|-------------|-------|------------|-----|--------|-----------|-----------|---------| | | | | 180 | 35-01-0 | 013 | 1803 | 5-01-0 | 0014 | 180 | 035-01-0 | 0015 | 180 | 35-01 | 0016 | 18 | 035-01-0 | 0017 | 18035-01- | 0018 | 1803 | 35-01-00 | 19 | 1803 | 35-01-0 | 020 | 180 | 35-01-0021 | 180 | 35-01-0022 | | 18035 | 5-01-0023 | 18035-0 | 01-0024 | | Scientific Name | Common Name | Species Type | PnoLS | P-all | T | PnoLS F | P-all | T | PnoLS | P-all | Т | PnoLS | P-all | T | PnoLS | P-all | Т | PnoLS P-all | Т | PnoLS | P-all 1 | Г | PnoLS | P-all | Т | PnoLS | P-all T | PnoLS | P-all T | Pr | noLS P | -all T | PnoLS P-a | II T | | Acer rubrum | red maple | Tree | Baccharis halimifolia | eastern baccharis | Shrub | 4 | | | | | | 1 | | | | | | | | Betula nigra | river birch | Tree | 1 | 1 | 1 | 4 | 4 | 4 | 3 | 3 | 3 | 1 | . : | 1 : | 1 | | | | | | | | 5 | 5 | 5 | | | 2 | . 2 | 2 | | | | | | Carpinus caroliniana | American hornbeam | Tree | 1 | | | | | | | | Cornus amomum | silky dogwood | Shrub | Diospyros virginiana | common persimmon | Tree | 1 | | | | | | | | Liquidambar styraciflua | sweetgum | Tree | | | | | | | | | 1 | | | | | | 10 | | | | | | | | | | | | | | | | | | | Liriodendron tulipifera | tuliptree | Tree | | | | 2 | 2 | 2 | 1 | | | | | | | | Magnolia virginiana | sweetbay | Tree | 1 | 1 | 1 | | | | | | | | | | | | | 1 1 | . 1 | | | | 1 | 1 | 1 | 1 | 1 1 | 1 | | | | | 3 | 3 | | Morella cerifera | wax myrtle | shrub | | | | 2 | 2 | 2 | | | | | | | 3 | 3 3 | 3 | 1 1 | . 1 | 2 | 2 | 2 | | | | | | 1 | . 1 | 1 | | | | | | Nyssa | tupelo | Tree | Nyssa sylvatica | blackgum | Tree | | | | | | | | | | 2 | : | 2 2 | 2 | Persea palustris | swamp bay | tree | | | | | | | | | | | | | 1 | 1 1 | 1 | | | | | | | | | | | 1 | | | | | | | | Pinus taeda | loblolly pine | Tree | | | 5 | | | | | | 3 | | | | | | | | | | | | | | | | | 1 | | | | | | | | Prunus serotina | black cherry | Tree | | | | | | | | | | | | | 3 | 3 3 | 3 | | | | | | | | | | | | | | | | | | | Quercus | oak | Tree | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | . 1 | . : | 1 : | 1 3 | 3 3 | 3 | 3 3 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 3 3 | 3 | 3 | 3 | 4 | 4 4 | | | | Quercus alba | white oak | Tree | 1 | 1 | 1 | | | | 1 | . 1 | 1 | Quercus bicolor | swamp white oak | Tree | | | | | | | | | | 3 | . : | 3 3 | 3 | | | 2 2 | 2 | | | | | | | 1 | 1 1 | | | | 1 | 1 1 | | | | Quercus lyrata | overcup oak | Tree | | | | | | | 1 | . 1 | 1 | | | | 4 | 4 | 4 | | | | | | | | | | | 1 | | | 1 | 1 1 | | | | Quercus michauxii | swamp chestnut oak | Tree | 1 | 1 | 1 | 2 | 2 | 2 | | | | 6 | , (| 5 6 | 5 2 | 2 2 | 2 | 2 2 | . 2 | 2 | 2 | 2 | | | | | | | | | | | 1 | 1 | | Quercus nigra | water oak | Tree | 3 | 3 | 3 | | | | 1 | . 1 | 1 | . 1 | | 1 : | 1 | | | | | | | | | | | 1 | 1 1 | 1 | | | 2 | 2 2 | | | | Quercus pagoda | cherrybark oak | Tree | 1 | 1 | 1 | 1 | 1 | 1 | | | | | | | 4 | 4 | 4 | 1 1 | . 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | 4 | 4 | 4 | | | 3 | 3 | | Quercus phellos | willow oak | Tree | 1 | | | | | | | | Taxodium distichum | bald cypress | Tree | 1 | 1 | 1 | 6 | 6 | 6 | 1 | . 1 | 1 | | | | | | | | | 3 | 3 | 3 | 1 | 1 | 1 | 4 | 4 4 | 3 | 3 | 3 | 6 | 6 6 | 2 | 2 | | Ulmus americana | American elm |
Tree | | | | 1 | 1 | 1 | | | | | | | | | | 4 4 | . 4 | 1 | 1 | 1 | | | | | | 1 | . 1 | 1 | | | | | | Unknown | | Shrub or Tree | 1 | | | 1 | 1 1 | | | | | • | Stem count | 11 | 11 | 16 | 20 | 20 | 20 | 9 | 9 | 13 | 14 | - 14 | 4 14 | 4 20 | 20 | 30 | 14 14 | 14 | 10 | 10 | 14 | 9 | 9 | 9 | 10 | 10 10 | 14 | 14 | 14 | 15 | 15 15 | 9 | 9 1 | | | | size (ares) | | 1 | | | 1 | | | 1 | | | 1 | | | 1 | | 1 | | | 1 | | | 1 | | | 1 | 1 | 1 | | | 1 | : | 1 | | | | size (ACRES) | | 0.02 | | | 0.02 | | | 0.02 | | | 0.02 | | | 0.02 | | 0.02 | | | 0.02 | | | 0.02 | | | 0.02 | | 0.02 | | | 0.02 | 0.0 | 02 | | | | Species count | 8 | 8 | 9 | 8 | 8 | 8 | 6 | 6 | 8 | 6 | | 5 6 | 5 | 7 7 | 8 | 7 7 | 7 | 6 | 6 | 7 | 5 | 5 | 5 | 5 | 5 5 | 6 | 6 | 6 | 6 | 6 6 | 4 | 4 | | | | Stems per ACRE | 445.2 | 445.2 | 647.5 | 809.4 | 809.4 | 809.4 | 364.2 | 364.2 | 526.1 | 566.6 | 566. | 566.6 | 809.4 | 809.4 | 1214 | 566.6 566.6 | 566.6 | 404.7 | 404.7 | 566.6 | 364.2 | 364.2 | 364.2 | 404.7 | 404.7 404.7 | 566.6 | 566.6 56 | 6.6 | 607 | 607 607 | 364.2 36 | 64.2 68 | ### Color for Density Exceeds requirements by 10% Exceeds requirements, but by less than 10% Fails to meet requirements, by less than 10% Fails to meet requirements by more than 10% PnoLS = Planted excluding livestakes P-all = Planted including livestakes T = All planted and natural recruits including livestakes T includes natural recruits Table 8. Planted Stems by Plot and Species (continued) CVS Project Code 18035. Project Name: Alliance Headwaters | | | | | | | | | | | | | Current | Plot D | ata (M\ | /2 2021 |) | | | | | | | | | | | Anr | nual Me | eans | | | |-------------------------|--------------------|----------------|-------|----------|-------|-------|--------|---------|-------------|------|-------|---------|--------|---------|---------|-------|-------------|----------|-------|---------|-------|---------|---------|-------|-------|-------------|-------|---------|-------|-------|-----------| | | | | 180 | 035-01-0 | 0025 | 180 | 35-01- | 0026 | 18035-01-0 | 0027 | 180 | 35-01-0 | 0028 | 180 | 35-01-0 | 029 | 18035-01 | L-0030 | 180 | 35-01-0 | 031 | 1803 | 5-01-00 | 32 | M | Y2 (2021) | М | Y1 (202 | 20) | M' | Y0 (2020) | | Scientific Name | Common Name | Species Type | PnoLS | P-all | T | PnoLS | P-all | T | PnoLS P-all | T | PnoLS | P-all | T | PnoLS | P-all | Т | PnoLS P-all | T | PnoLS | P-all | Т | PnoLS F | P-all T | | PnoLS | P-all T | PnoLS | P-all | Т | PnoLS | P-all T | | Acer rubrum | red maple | Tree | | | 3 | | | | | 4 | | | | | | | | | | | | | | | | - | 7 | | | | | | Baccharis halimifolia | eastern baccharis | Shrub | | | | | | | | 4 | | | | | | | | | | | 1 | | | | | 13 | 3 | | | | | | Betula nigra | river birch | Tree | | | | | | | | | | | | | | | 1 | 1 1 | L | | | | | | 30 | 30 30 | 32 | 32 | 32 | 36 | 36 | | Carpinus caroliniana | American hornbeam | Tree | | | | | | | | | | | | | | | | | 1 | 1 | 1 | | | | 1 | 1 : | 1 | 1 | . 1 | | | | Cornus amomum | silky dogwood | Shrub | 2 | 2 | | Diospyros virginiana | common persimmon | Tree | 2 | 2 | | Liquidambar styraciflua | sweetgum | Tree | | | 9 | | | | | 14 | | | | | | | | | | | | | | | | 40 |) | | | | | | Liriodendron tulipifera | tuliptree | Tree | 2 | 2 2 | 2 | 12 | 12 12 | 16 | 16 | 16 | 26 | 26 | | Magnolia virginiana | sweetbay | Tree | | | | | | | | | | | | 1 | 1 | 1 | | | | | | | | | 13 | 13 13 | 16 | 16 | 16 | 28 | 28 | | Morella cerifera | wax myrtle | shrub | 1 | 1 1 | 1 | 2 | . 2 | 2 2 | | | | | | 2 | 2 | 2 | 1 | 1 1 | L | | | | | | 23 | 23 23 | 25 | 25 | 25 | 29 | 29 | | Nyssa | tupelo | Tree | 1 | 1 : | 3 | 3 | 3 | 3 | 3 | | Nyssa sylvatica | blackgum | Tree | 3 | 3 3 | 3 | 3 | 3 | 12 | 12 | | Persea palustris | swamp bay | tree | | | | | | | | | | | | | | | | | 1 | 1 | 1 | | | | 5 | 5 5 | 8 | 8 | 8 | 12 | 12 | | Pinus taeda | loblolly pine | Tree | 8 | 3 | | | | | | Prunus serotina | black cherry | Tree | 4 | 4 4 | 4 | 4 | 4 | 5 | 5 | | Quercus | oak | Tree | | | | | | | 1 1 | 1 | 1 | 1 | 1 | | | | 2 | 2 2 | 2 | | | | | | 53 | 53 53 | 74 | 74 | 74 | 101 | 101 1 | | Quercus alba | white oak | Tree | 4 | 4 4 | 6 | 6 | 6 | 2 | 2 | | Quercus bicolor | swamp white oak | Tree | 1 | 1 1 | 1 | 1 | . 1 | 1 1 | 1 1 | 1 | | | | | | | | | | | | | | | 10 | 10 10 | 3 | 3 | 3 | 2 | 2 | | Quercus lyrata | overcup oak | Tree | | | | | | | | | | | | | | | 2 | 2 2 | 2 | | | | | | 9 | 9 9 | 9 | 9 | 9 | 13 | 13 | | Quercus michauxii | swamp chestnut oak | Tree | 2 | 2 2 | 2 | | | | | | 1 | 1 | 1 | | | | | | | | | 1 | 1 | 1 | 48 | 48 48 | 36 | 36 | 36 | 10 | 10 | | Quercus nigra | water oak | Tree | | | | 1 | . 1 | 1 1 | 1 1 | 1 | | | | | | | | | 6 | 6 | 6 | 6 | 6 | 6 | 37 | 37 37 | 31 | 31 | 31 | 18 | 18 | | Quercus pagoda | cherrybark oak | Tree | | | | 6 | 6 | 6 | 1 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 1 | 1 1 | 1 | 1 | | | | 37 | 37 37 | 32 | 32 | 32 | 34 | 34 | | Quercus phellos | willow oak | Tree | 4 | 4 4 | 3 | 3 | 3 | | | | Taxodium distichum | bald cypress | Tree | 2 | 2 2 | 2 | | | | 2 2 | 2 | 3 | 3 | 3 | 2 | 2 | 2 | | | | | | 1 | 1 | 1 | 68 | 68 68 | 61 | 61 | 61 | 60 | 60 | | Ulmus americana | American elm | Tree | | | | | | | 4 4 | 4 | | | | | | | 2 | 2 2 | 2 1 | 1 | 1 | 2 | 2 | 2 | 36 | 36 36 | 34 | 34 | 34 | 21 | 21 | | Unknown | | Shrub or Tree | 2 | 2 2 | 2 2 | 2 | . 2 | 4 | 4 | | | | Stem count | : 8 | 8 | 20 | 10 | 10 | 10 | 10 10 | 32 | 7 | 7 | 7 | 7 | 7 | 7 | 9 | 9 9 | 10 | 10 | 11 | 10 | 10 | 10 | 400 | 400 468 | 399 | 399 | 399 | 420 | 420 4 | | | | size (ares) | | 1 | | | 1 | | 1 | | | 1 | | | 1 | | 1 | | | 1 | | • | 1 | | | 32 | | 32 | | | 32 | | | | size (ACRES) | | 0.02 | | | 0.02 | | 0.02 | | | 0.02 | | | 0.02 | | 0.0 | 2 | | 0.02 | | | 0.02 | | | 0.79 | | 0.79 | | | 0.79 | | | | Species count | 5 | 5 5 | 7 | 4 | . 4 | 1 4 | 6 6 | 9 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | 6 6 | 5 5 | 5 | 6 | 4 | 4 | 4 | 20 | 20 24 | 20 | _ | | 20 | 20 | | | | Stems per ACRE | 323.7 | 323.7 | 809.4 | 404.7 | 404.7 | 7 404.7 | 404.7 404.7 | 1295 | 283.3 | 283.3 | 283.3 | 283.3 | 283.3 | 283.3 | 364.2 364 | .2 364.2 | 404.7 | 404.7 | 445.2 | 404.7 | 404.7 | 104.7 | 505.9 | 505.9 591.9 | 504.6 | 504.6 | 504.6 | 531.1 | 531.1 53 | #### Color for Density Exceeds requirements by 10% Exceeds requirements, but by less than 10% Fails to meet requirements, by less than 10% Fails to meet requirements by more than 10% PnoLS = Planted excluding livestakes P-all = Planted including livestakes T = All planted and natural recruits including livestakes T includes natural recruits Table 9. MY2 Temporary Vegetation Plot Data Alliance Headwaters Restoration Site | Species | T-1 (51°) | T-2 (8°) | T-3 (°) | T-4 (160°) | T-5 (110°) | T-6 (210°) | T-7 (28°) | |-------------------------|-----------|----------|---------|------------|------------|------------|-----------| | Betula nigra | 5 | 2 | 1 | | 2 | 7 | | | Liriodendron tulipifera | | | | 1 | | | | | Magnolia virginiana | | | | | 3 | 2 | | | Morella cerifera | | | | 3 | | 1 | 1 | | Nyssa Spp. | | | | | 1 | | | | Persea palustris | | | | | | | | | Quercus spp. | 3 | 10 | 2 | | 6 | 2 | 4 | | Quercus alba | | | 3 | | 1 | | | | Quercus lyrata | | | | | | | | | Quercus michauxii | | 3 | 10 | 2 | 2 | | 3 | | Quercus nigra | | 1 | 2 | 1 | | 2 | | | Quercus pagoda | 3 | | | 2 | 2 | 2 | 1 | | Taxodium distichum | 1 | 2 | | 3 | | | 2 | | Quercus rubra | | | | | | | 4 | | Diospyros virginiana | | | | | | | 2 | | Ulmus americana | 1 | | | | 1 | 2 | | | Prunus serotina | | | 5 | | 1 | | | | Total Number of Stems | 13 | 18 | 23 | 12 | 19 | 18 | 17 | | Stems/Acre | 526 | 728 | 931 | 486 | 769 | 728 | 688 | Table 9. Temporary Vegetation Plot Data (continued) Alliance Headwaters Restoration Site | Species | T-8 (235°) | T-9 (°) | T-10 (129°) | T-11 (343°) | T-12 (141°) | T-13 (45°) | T-14 (241°) | |-------------------------|------------|---------|-------------|-------------|-------------|------------|-------------| | Betula nigra | 1 | | 4 | 1 | 1 | 3 | 5 | | Liriodendron tulipifera | | | 1 | | | | | | Magnolia virginiana | | | | | 3 | 2 | | | Morella cerifera | | 1 | | | | | 1 | | Nyssa sylvatica | | | | | | | 2 | | Persea palustris | | | | | | | | | Quercus spp. | 8 | 3 | 3 | 1 | 3 | | | | Quercus alba | | | 1 | | | | 1 | | Quercus lyrata | | 3 | | | | | 3 | | Quercus michauxii | | | 6 | | 1 | 1 | | | Quercus nigra | | 1 | 1 | | | 2 | | | Quercus pagoda | | 6 | | 2 | | | 1 | | Taxodium distichum | 2 | 14 | 2 | 9 | 6 | 3 | 2 | | Quercus phellos | | 1 | | | | | | | Quercus bicolor | | | | 1 | 1 | 1 | 1 | | Quercus rubra | 4 | 2 | | | | | | | Carpinus caroliniana | | | | | | 1 | | | Diospyros virginiana | | | | | | | | | Ulmus americana | | | | | 1 | | 1 | | Prunus serotina | | | | | | | | | Total Number of Stems | 15 | 31 | 18 | 14 | 16 | 13 | 17 | | Stems/Acre | 607 | 1255 | 728 | 567 | 647 | 526 | 688 | Table 9. Temporary Vegetation Plot Data (continued) Alliance Headwaters Restoration Site | Species | T-15 (2°) | T-16 (102°) | T-17 (3°) | T-18 (95°) | |-------------------------|-----------|-------------|-----------|------------| | Betula nigra | 1 | 2 | 4 | | | Liriodendron tulipifera | | | | | | Magnolia virginiana | 1 | 3 | 2 | | | Morella cerifera | | 1 | 2 | | | Nyssa Spp. | | | | | | Persea palustris | | | | | | Quercus spp. | | | 1 | | | Quercus alba | | | | | | Quercus lyrata | 1 | | 2 | | | Quercus michauxii | | | 1 | | | Quercus nigra | | 1 | | 2 | | Quercus pagoda | | | 1 | 1 | | Taxodium distichum | 1 | 3 | 1 | 6 | | Quercus phellos | | | | | | Quercus bicolor | | 1 | 1 | 2
	Quercus rubra						Carpinus caroliniana						Diospyros virginiana						Ulmus americana	1					Prunus serotina						Total Number of Stems	5	11	15	11		Stems/Acre	202	445	607	445	Table 10. MY2 Planted Vegetation Totals Alliance Headwaters Mitigation Site	Alliance Headwaters Mitigation Site Plot #	Planted Stems/Acre	Success Criteria Met?		---	--------------------	-----------------------		1	607	Yes		2	445	Yes		3	1012	Yes		4	648	Yes		5	567	Yes		6				7	648	Yes			769	Yes		8	405	Yes		9	567	Yes		10	445	Yes		11	486	Yes		12	445	Yes		13	445	Yes		14	809	Yes		15	364	Yes		16	567	Yes		17	809	Yes		18	567	Yes		19	405	Yes		20	364	Yes		21	405	Yes		22	567	Yes		23	607	Yes		24	364	Yes		25	324	Yes		26	405	Yes		27	405	Yes		28	283	No		29	283	No		30	364	Yes		31	405	Yes		32	405	Yes		Average Planted Stems/Acre	506	Yes	**Table 11. MY2 Temporary Vegetation Plot Planted Vegetation Totals Alliance Headwaters Mitigation Site**	Transect#	Planted Stems/Acre	Success Criteria Met?		----------------------------	--------------------	-----------------------		T-1	526	Yes		T-2	728	Yes		Т-3	931	Yes		T-4	486	Yes		T-5	769	Yes		T-6	728	Yes		Т-7	688	Yes		T-8	607	Yes		Т-9	1255	Yes		T-10	728	Yes		T-11	567	Yes		T-12	647	Yes		T-13	526	Yes		T-14	688	Yes		T-15	202	No		T-16	445	Yes		T-17	607	Yes		T-18	445	Yes		Average Planted Stems/Acre	643	Yes	### APPENDIX D: STREAM GEOMORPHOLOGY DATA Tables 12A-12E. Baseline Stream Data Summary Tables 13A-13D. Monitoring Data-Dimensional Morphology Summary (Dimensional Parameters-Cross-sections) Tables 14A-14E. Monitoring Data-Stream Reach Data Summary **Cross-Section Plots**						Projec	t Name	2/Num	her (ΔII			Baseline Stream D			nch 1&2 (2033 feet)									---	--------------------	-----	----------	-----	--------	------------	----------	----------	-----------------	---------	-------------------	--------	-----------------	---------------------	-----------------	-------	------	---------	----------	-----------------	----		Parameter	Gauge ²	Reg	jional C		l			g Cond		ICauw	Johanna Creek Ro		Still Creek Ref	Cole Property Ref	Design			Monitor	ing Base	eline			Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD ⁵	n	Min Mean Ma	ах	Min Mean Max	Min Med Max	Min Med Max	Min	Mean	Med	Max	SD ⁵	n		Bankfull Width (ft)					8.4	13.3		24			9.7		7.4	6.5	6.5 - 7.5	7.1		7.9	8.6		2		Floodprone Width (ft)					100	100		100							100	100		100	100		2		Bankfull Mean Depth (ft)					1.43	1.68		2.25			0.8		0.82	0.6	0.50 - 0.70	0.5		0.5	0.5		2		¹ Bankfull Max Depth (ft)											0.75 - 1.00		0.75 - 1.00	0.75 - 1.00	0.60 - 0.71	0.9		1	1.1		2		Bankfull Cross Sectional Area (ft²)					12.9	22.2		42			8		6.1	3.8	3.0 - 4.0	3.6		4	4.4		2		Width/Depth Ratio											12		9	10	14	14		15.6	17.2		2		Entrenchment Ratio					1.3	1.65		2			> 3.0		> 3.0	> 3.0	6.9 - 10.2	11.6		12.9	14.1		2																		0.9		1	1.1		2		¹ Bank Height Ratio					2.7	3.0		3.3			1.0 - 1.2		1.0 - 1.2	1.0 - 1.2	1.0	1.0		1.0	1.0		2		Profile																							Riffle Length (ft)															7.0 - 30.0	9	28.6	28.45	49.5	10.7	35		Riffle Slope (ft/ft)					1.											0.000			0.021	0.007	13		Pool Length (ft)					No dis	tinct repe				d pools						4.3	10.9	9.14	39.8	7.5	27		Pool Max depth (ft)					1	due to	Straight	ening ac	uviues.							1.7		1.8	2		3		Pool Spacing (ft)					1											25.3	49.8	50.71	89.2	14.7	35		Pattern																							Channel Beltwidth (ft)												\neg			I	Г							Radius of Curvature (ft)					1						1.5 - 2.8		2.9 - 6.4	1.2 - 2.3									Rc:Bankfull width (ft/ft)					No dis	tinct repe				d pools													Meander Wavelength (ft)					1	due to	straignt	ening ac	uvities.														Meander Width Ratio					1						1.4 - 2.1		2.1 - 6.6	5.4 - 8.2																																Transport parameters																							Reach Shear Stress (competency) lb/f2																							Max part size (mm) mobilized at bankfull																							Stream Power (transport capacity) W/m²	2																						Additional Reach Parameters											•			•		_							Rosgen Classification							Incise	ed B5c			C5/E5		E5	E5/C5	C5				C5				Bankfull Velocity (fps)															1.4 -2.1			1	.4 -2.1				Bankfull Discharge (cfs)															4.2 -8.4								Valley length (ft)																							Channel Thalweg length (ft)															2033				2033				Sinuosity (ft)								1			1.22 - 1.59		1.22 - 1.59	1.22 - 1.59	1.26 -1.29				26 -1.29				Water Surface Slope (Channel) (ft/ft)							0.0	007			0.0027 - 0.0088		0.0027 - 0.0088	0.0027 - 0.0088	0.0026 - 0.0049			(0.0049				BF slope (ft/ft)																							³ Bankfull Floodplain Area (acres)																							⁴% of Reach with Eroding Banks																							Channel Stability or Habitat Metric																							Biological or Other																						Shaded cells indicate that these will typically not be filled in. ^{1 =} The distributions for these parameters can include information from both the cross-section measurements and the longitudinal profile. 2 =For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare). ^{3.} Utilizing XS measurement data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope. ^{4 =} Proportion of reach exhibiting banks that are eroding based on the visual survey for comparison to monitoring data; 5. Of value/needed only if the n exceeds 3						Proje	ct Nam	ne/Num	nber (A						Summary ent/Reach: UT1/Re	each	h 3 (1463 fe	eet)										--	--------------------	-----	----------	------	------------------------	------------	------------	--	-----------------	---------	-----------	-----------------	-----------------	------------------------------	---------------	---------------	------	-------	--------	-------	---------	---------	--------	--	----		Parameter	Gauge ²	Reg	jional C	urve	Pre-Existing Condition					Joha	nna Creek	Ref	Still Creek Ref	c	Cole Propert	y Ref	Des	sign			Monitor	ing Bas	eline				Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD ⁵	l n	Min	Mean	Max	Min Mean Max	- I	Min Med	Max	Min M	ed Max	Min	Mean	Med	Max	SD⁴	n		Bankfull Width (ft)						_		7				9.7		7.4		6.5			.9	10.4		10.4	10.4		1		Floodprone Width (ft)						100		100											00	100	1	100	100		1		Bankfull Mean Depth (ft)												0.8		0.82		0.6		0.5	- 0.7	0.8		0.8	0.8		1		¹ Bankfull Max Depth (ft)					0.6	0.7		0.8				0.75 - 1.00		0.75 - 1.00		0.75 - 1.00	0	0.	93	1.4		1.4	1.4		1		Bankfull Cross Sectional Area (ft²)	1				1	1.75		2.5				8		6.1		3.8		7		8.4		8.4	8.4		1		Width/Depth Ratio					6.6	8.6		10.6				12		9		10			4	13		13	13	 	1		Entrenchment Ratio					1.3	1.65		2				> 3.0		> 3.0		> 3.0			.7	9.6	1	9.6	9.6		1		2 Monor Maria																				1.4	1	1.4	1.4		1		¹ Bank Height Ratio					2.7	3.0		3.3				1.0 - 1.2		1.0 - 1.2		1.0 - 1.2		1	.0	1.0	1	1.0	1.0		1		Profile Profile						0.0		0.0				1.0 1.2		1.0 1.2		1.0 1.2		·									Riffle Length (ft)					I						Π		T		$\overline{}$			14.0	- 25.0	12.2	39.6	38.7	63.2	12.7	23		Riffle Slope (ft/ft)					1,, ,,															0.001			0.029	0.009	10		Pool Length (ft)					No dist				riffles and	d pools										4.7	13	11.75	32	6.4	22		Pool Max depth (ft)					1	due to	straighte	ening ac	tivities.											1.9	2.1	2.1	2.3		2		Pool Spacing (ft)																				37.3	68	73.78	87.5	13.9	22		Pattern																											Channel Beltwidth (ft)																																																																																																																																																																																																																																																																																																																																													
																						Radius of Curvature (ft)					No dist	tinct rene	etitive na	ttern of	riffles and	d nools		1.5 - 2.8		2.9 - 6.4		1.2 - 2.3								L			Rc:Bankfull width (ft/ft)					NO dis		straighte			a pools																	Meander Wavelength (ft)					l	440 10	o o g	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,																<u> </u>			Meander Width Ratio												1.4 - 2.1		2.1 - 6.6		5.4 - 8.2											Transport parameters																											Reach Shear Stress (competency) lb/f ²																				T				$\overline{}$			Max part size (mm) mobilized at bankfull																											Stream Power (transport capacity) W/m ²																											Additional Reach Parameters																											Rosgen Classification							Incise	d B5c				C5/E5		E5	Т	E5/C5			5	T			C5				Bankfull Velocity (fps)																			.5				1.5				Bankfull Discharge (cfs)																		10).7								Valley length (ft)																											Channel Thalweg length (ft)																			63				1463				Sinuosity (ft)							1	1				1.22 - 1.59		1.22 - 1.59		1.22 - 1.59			35				1.35				Water Surface Slope (Channel) (ft/ft)							0.0	26			0.0	0.0088 - 0.0088	8	0.0027 - 0.0088		0.0027 - 0.00	088	0.0	018			(0.0028				BF slope (ft/ft)																											³ Bankfull Floodplain Area (acres)																											⁴ % of Reach with Eroding Banks																											Channel Stability or Habitat Metric															1												Biological or Other																										^{1 =} The distributions for these parameters can include information from both the cross-section measurements and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare). ^{3.} Utilizing XS measurement data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope. ^{4 =} Proportion of reach exhibiting banks that are eroding based on the visual survey for comparison to monitoring data; 5. Of value/needed only if the n exceeds 3						F	Project	Name/	/Numb						Summary egment/Rea	ach: UT2	2 (996.	6.7 feet)												--	--------------------	-----	----------	------	--------	------------	--------------------------	-------------	-----------------	-----------	-----	-------------	-----	--------------------	-----------	---------	------------	--------	-----	---------	-----	--------	----------	-------	--------	-----------------	----		Parameter	Gauge ²	Reg	jional C	urve						anna Cree		Still Cree			e Propert	y Ref		Design				Monito	ring Bas	eline					Dimension and Substrate - Riffle Only	П	LL	UL	Eq.	Min	Mean	Med	Max	SD ⁵	n	Min	Mean	Max	Min Mea	n Max	Min	Med	Max	Min	Med	Max	Min	Mean	Med	Max	SD ⁵	n		Bankfull Width (ft)				'		_		7				9.7		7.4			6.5			7.5		9.9		9.9	9.9		1		Floodprone Width (ft)						100		100												100		100		100	100		1		Bankfull Mean Depth (ft)												0.8		0.82)		0.6			0.6		0.6		0.6	0.6		1		¹ Bankfull Max Depth (ft)					0.6	0.7		0.8				0.75 - 1.00		0.75 - 1	.00		0.75 - 1.0	0		0.7		1.3		1.3	1.3		1		Bankfull Cross Sectional Area (ft ²)	1		1		1	1.75		2.5				8		6.1			3.8			4.0		6.1		6.1	6.1		1		Width/Depth Ratio	-				6.6	8.6		10.6				12		9			10			14		16.1		16.1	16.1		1		Entrenchment Ratio	-				1.3	1.65		2				> 3.0		> 3.0)		> 3.0			5.6		10.1		10.1	10.1		1																								1.3		1.3	1.3		1		¹ Bank Height Ratio					2.7	3.0		3.3				1.0 - 1.2		1.0 - 1	.2		1.0 - 1.2			1.0		1.0		1.0	1.0		1		Profile			•																										Riffle Length (ft)																1			14	.0 - 50	0	15.7	29.9	28.44	52.3	10.8	11		Riffle Slope (ft/ft)					No dia	tinat vana	4141	44 a wa a f	w:ffl = = = = =	ماممما												0.000	0.014		0.014	0.005	8		Pool Length (ft)					NO dis		etitive par straighte		riffles and	a poois												2.4	14.2	12.38	28.4	7.4	17		Pool Max depth (ft)]	due to	Straighte	ening ac	divides.													1.6	1.6	1.6	1.6		1		Pool Spacing (ft)																						34.5	55.6	54.92	73.1	10.7	16		Pattern											_																		Channel Beltwidth (ft)					l																								Radius of Curvature (ft)					No dis	tinct repe	etitive pa	ttern of	riffles an	d pools		1.5 - 2.8		2.9 - 6	5.4		1.2 - 2.3												Rc:Bankfull width (ft/ft)							straighte			a poo.o																			Meander Wavelength (ft)					l		Ü	Ü				4.4.0.4		0.4			5.4.00												Meander Width Ratio												1.4 - 2.1		2.1 - 6	5.6		5.4 - 8.2												Transport parameters																													Reach Shear Stress (competency) lb/f ²																										I			Max part size (mm) mobilized at bankfull																													Stream Power (transport capacity) W/m ²																													Additional Reach Parameters																•													Rosgen Classification							G	55				C5/E5		E5		Т	E5/C5			C5					C5				Bankfull Velocity (fps)			I																	2.1					2.1				Bankfull Discharge (cfs)																				8.4									Valley length (ft)																													Channel Thalweg length (ft)																				997					997				Sinuosity (ft)							1	1				1.22 - 1.59		1.22 - 1			1.22 - 1.5			1.22					1.22				Water Surface Slope (Channel) (ft/ft)							0.0	004			0.0	0027 - 0.00	88	0.0027 - 0	.0088	0.0	0027 - 0.0	088		0.0049					0.0031				BF slope (ft/ft)																													³ Bankfull Floodplain Area (acres)																													⁴ % of Reach with Eroding Banks																													Channel Stability or Habitat Metric																													Biological or Other																												^{1 =} The distributions for these parameters can include information from both the cross-section measurements and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare). ^{3.} Utilizing XS measurement data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope. ^{4 =} Proportion of reach exhibiting banks that are eroding based on the visual survey for comparison to monitoring data; 5. Of value/needed only if the n exceeds 3						Р	roject l	Name/N	Numbe				e Stream Data ers/97086) - S	a Summary egment/Reach: UT3	3 (1914.8 f	eet)											--	--------------------	-----	----------	------	---------	------------	--------------------------	------------	-----------------	----------	------	---------------------------------	--------------------------------	-------------	-----------	--------	-------------	------	-------	----------	---------	----------	-----------------	----		Parameter	Gauge ²	Reg	jional C	urve		Pre-	Existing	g Cond	lition		Joha	nna Creek Ref	Still Creek Ref	Cole Pro	perty Ref	L	Desig	n			Monitor	ing Base	eline			Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD ⁵	n	Min	Mean Max	Min Mean Max	Min M	ed Max	СМ	in Med	Max	Min	Mean	Med	Max	SD ⁵	n		Bankfull Width (ft)					5	6		7				9.7	7.4		.5		7.5 - 9.		7.3		8.1	8.9		2		Floodprone Width (ft)					100	100		100		1							100		100		100	100		2		Bankfull Mean Depth (ft)												0.8	0.82	C	.6		0.6 - 0.	7	0.6		0.6	0.6		2		¹ Bankfull Max Depth (ft)					0.6	0.7		0.8				0.75 - 1.00	0.75 - 1.00	0.75	- 1.00		0.7 - 0.8	36	1		1	1		2		Bankfull Cross Sectional Area (ft ²)					1	1.75		2.5				8	6.1	3	.8		4.0 - 6.	0	4.3		4.9	5.4		2		Width/Depth Ratio					6.6	8.6		10.6				12	9		0		14		12.4																																																																									
13.5	14.7		2		Entrenchment Ratio					1.3	1.65		2				> 3.0	> 3.0	>	3.0		4.3 - 5.	3	11.2		12.5	13.7		2																					1.0		1.0	1.0		2		¹ Bank Height Ratio					2.7	3.0		3.3				1.0 - 1.2	1.0 - 1.2	1.0	- 1.2		1.0		1.0		1.0	1.0		2		Profile																										Riffle Length (ft)																\top	8.0 - 29	.8	22.1	39	35.67	60.9	10	29		Riffle Slope (ft/ft)					No die	tinat rang	stitis a par	ttorn of	riffloo on	ماممم لم									0.001	0.005	0.005	0.010	0.003	14		Pool Length (ft)					NO dis		etitive pat straighte			a pools									7	10.7	10.06	16.8	2.5	28		Pool Max depth (ft)						due to	Straigrite	silling ac	divides.										1.6	1.65	1.65	1.7		2		Pool Spacing (ft)																			45.6	63	60.35	91.7	11.3	28		Pattern														-						<u> </u>						Channel Beltwidth (ft)																										Radius of Curvature (ft)					No dist	tinct repe	etitive pat	ttern of	riffles an	d pools		1.5 - 2.8	2.9 - 6.4	1.2	- 2.3											Rc:Bankfull width (ft/ft)							straighte																			Meander Wavelength (ft)												4.4.0.4	24.00	F 4	0.0											Meander Width Ratio												1.4 - 2.1	2.1 - 6.6	5.4	- 8.2											Transport parameters																										Reach Shear Stress (competency) lb/f ²																										Max part size (mm) mobilized at bankfull																										Stream Power (transport capacity) W/m ²																										Additional Reach Parameters																										Rosgen Classification							Incise	d B5c				C5/E5	E5	E5	/C5		C5					C5				Bankfull Velocity (fps)																	1.9 - 2.	6			1.	9 - 2.6				Bankfull Discharge (cfs)																	7.5 - 15	.4								Valley length (ft)																										Channel Thalweg length (ft)																	1915					1915				Sinuosity (ft)							1	1				1.22 - 1.59	1.22 - 1.59		- 1.59		1.21 - 1.					1 - 1.38				Water Surface Slope (Channel) (ft/ft)							0.0	003			0.0	0027 - 0.0088	0.0027 - 0.0088	0.0027	- 0.0088		0.0038 - 0.	0040			C	.0033				BF slope (ft/ft)																4										³ Bankfull Floodplain Area (acres)																										⁴ % of Reach with Eroding Banks																										Channel Stability or Habitat Metric																										Biological or Other																									^{1 =} The distributions for these parameters can include information from both the cross-section measurements and the longitudinal profile. 2 =For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare). ^{3.} Utilizing XS measurement data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope. 4 = Proportion of reach exhibiting banks that are eroding based on the visual survey for comparison to monitoring data; 5. Of value/needed only if the n exceeds 3						F	Project	Name/	/Numb				e Stream D ters/97086)		Summary egment/Reach: UT4	l (530.9	feet)												--	--------------------	-----	----------	------	---------------	------------	------------	----------	-----------------	---------	-----	---------------------------	----	------------------------------	----------	-----------	-----	-----	----------	-----	-------	-------	---------	---------	-----------------	---		Parameter	Gauge ²	Reg	gional C	urve			Existing					nna Creek Re		Still Creek Ref	Cole P		Ref		Desigr			-	Monitor	ing Bas	eline			Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD ⁵	l n	Min	Mean Ma	ах	Min Mean Max	Min	Med	Max	Min	Med	Max	Min	Mean	Med	Max	SD ⁵	n		Bankfull Width (ft)			+	- 4	5	6		7				9.7		7.4		6.5			6.5		7.5		7.5	7.5		1		Floodprone Width (ft)					100	100		100			1								100		100		100	100		1		Bankfull Mean Depth (ft)												0.8		0.82		0.6			0.5		0.5		0.5	0.5		1		¹ Bankfull Max Depth (ft)					0.6	0.7		0.8				0.75 - 1.00		0.75 - 1.00	0.7	75 - 1.00			0.61		0.9		0.9	0.9		1		Bankfull Cross Sectional Area (ft ²)	1				1	1.75		2.5				8		6.1		3.8			3.0		3.8		3.8	3.8		1		Width/Depth Ratio					6.6	8.6		10.6				12		9		10			14		14.8		14.8	14.8		1		Entrenchment Ratio					1.3	1.65		2				> 3.0		> 3.0		> 3.0			6.2		13.3		13.3	13.3		1		ZIMONOMINOM NAME														. 515							0.9		0.9	0.9		1		¹ Bank Height Ratio					2.7	3.0		3.3			1	1.0 - 1.2		1.0 - 1.2	1	.0 - 1.2			1.0		1.0		1.0	1.0		1		Profile					=	0.0		0.0				1.0 1.2		1.0 1.2		.0 1.2			1.0									Riffle Length (ft)					Г						I		т						10.0 -11	0	17.4	36.6	31.69	74.4	16.6	9		Riffle Slope (ft/ft)					1,																0.006	0.008		0.015	0.003	9		Pool Length (ft)					No dis				riffles and	d pools											5.2	9.5	9.34	12.3	2.3	9		Pool Max depth (ft)					1	due to	straighte	ening ac	divides.												1.4	1.4	1.4	1.4		1		Pool Spacing (ft)																					21.2	49.6	46.5	75.4	15.6	9		Pattern																												Channel Beltwidth (ft)																												Radius of Curvature (ft)					No dis	tinct repe	etitive pa	ttern of	riffles and	d nools		1.5 - 2.8		2.9 - 6.4	1.	.2 - 2.3												Rc:Bankfull width (ft/ft)					I No als		straighte			a poolo																		Meander Wavelength (ft)					l		J J	3																				Meander Width Ratio												1.4 - 2.1		2.1 - 6.6	5.	5.4 - 8.2												Transport parameters		_																										Reach Shear Stress (competency) lb/f²													Т															Max part size (mm) mobilized at bankfull																												Stream Power (transport capacity) W/m²																												Additional Reach Parameters																												Rosgen Classification					$\overline{}$						Г	C5/E5	т	E5	E	E5/C5			C5					C5				Bankfull Velocity (fps)																			2.1					2.1				Bankfull Discharge (cfs)																			6.2									Valley length (ft)																												Channel Thalweg length (ft)																			531					531				Sinuosity (ft)												1.22 - 1.59		1.22 - 1.59		22 - 1.59			1.36					1.36				Water Surface Slope (Channel) (ft/ft)											0.0	0027 - 0.0088		0.0027 - 0.0088	0.002	27 - 0.00	88		0.0057					0.0051				BF slope (ft/ft)																												³ Bankfull Floodplain Area (acres)																												⁴ % of Reach with Eroding Banks																												Channel Stability or Habitat Metric																												Biological or Other																											^{1 =} The distributions for these parameters can include information from both the cross-section measurements and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare). ^{3.} Utilizing XS measurement data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope. 4 = Proportion of reach exhibiting banks that are eroding based on the visual survey for comparison to monitoring data; 5. Of value/needed only if the n exceeds 3					Tab	le 13	a. Mo	nitor	ing D	ata -	Dime	nsion	al Mo	rpho	logy	Sumi	mary	(Dime	ensio	nal Pa	arame	eters -	- Cro	ss Se	ction	s)												---	------	------	--------	--------	--------	-------	-------	-------	-------	--------	---------	--------	------	------	------	------	---------	--------	---------	-------	---------	----------	-------	-------	--------	--------	-----	-----	------	------	--------	--------	----------	-----	-----										_			nce He		_			_	_								,														С	ross S	ection					
Section				ľ				3 (Riff		, ,	<u> </u>			ection	4 (Pod	ol)			С	ross S	ection	5 (Riffl	e)			Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+		Record elevation (datum) used																																					Bankfull Width (ft)	15.4	16.1	15.1					16.4	20.3	16.9					10.4	14.6	11.6					10.2	11.7	11.2					8.6	16.7	9.0						Floodprone Width (ft)	NA	NA	NA					NA	NA	NA					100	100	100					NA	NA	NA					100	100	100						Bankfull Mean Depth (ft)	0.9	0.9	1.0					1.1	0.9	1.1					0.8	0.6	0.7					0.9	0.8	0.8					0.5	0.3	0.5						Bankfull Max Depth (ft)	1.9	2.1	2.1					2.3	2.3	2.4					1.4	1.2	1.3					1.7	1.6	1.7					1.1	1.0	1.1						Bankfull Cross Sectional Area (ft ²)	14.5	14.5	14.5					18.5	18.5	18.5					8.4	8.4	8.4					9.0	9.0	9.0					4.4	4.4	4.4						Bankfull Width/Depth Ratio	NA	NA	NA					NA	NA	NA					12.9	25.4	15.9					NA	NA	NA					16.8	63.4	18.5						Bankfull Entrenchment Ratio	NA	NA	NA					NA	NA	NA					9.6	6.8	8.6					NA	NA	NA					11.6	6.0	11.1						Low Bank Height (ft)	1.9	2.2	2.1					2.3	2.4	2.4					1.4	1.3	1.3					1.7	1.8	1.8					1.1	1.0	1.1						Bankfull Bank Height Ratio	1.00	1.05	1.04					1.00	1.04	1.02					1.00	1.08	0.98					1.00	1.13	1.04					1.00	1.00	0.99						Cross Sectional Area between end pins (ft²)	23.4	26.7	23.9					20.1	24.1	23.2					11.4	11.3	15.0					16.9	14.0	13.9					8.8	12.5	11.2						d50 (mm)																																							С	ross S	ection	6 (Pod	ol)			C	ross S	Section	7 (Poo	I)			C	Cross S	ection	8 (Riff	le)														'			Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+																Record elevation (datum) used																																					Bankfull Width (ft)	10.4	13.4	11.5					8.0	8.8	8.0					7.1	7.0	7.3																				Floodprone Width (ft)	NA	NA	NA					NA	NA	NA					100	100	100.0																				Bankfull Mean Depth (ft)	0.6	0.5	0.5					0.9	0.8	0.9					0.5	0.5	0.5																				Bankfull Max Depth (ft)	2.0	1.2	1.2					1.8	1.8	1.7					0.9	8.0	8.0																				Bankfull Cross Sectional Area (ft²)	6.1	6.1	6.1					6.8	6.8	6.8					3.6	3.6	3.6																				Bankfull Width/Depth Ratio	NA	NA	NA					NA	NA	NA					14.0	13.6	14.7																				Bankfull Entrenchment Ratio	NA	NA	NA					NA	NA	NA					14.1	14.3	13.8																				Low Bank Height (ft)	2.0	1.3	1.0					1.8	1.9	1.8					0.9	0.8	0.9																				Bankfull Bank Height Ratio	1.0	1.08	0.90					1.0	1.06	1.07					1.0	1.00	1.12																				Cross Sectional Area between end pins (ft²)	12.8	12.4	10.5					11.7	11.2	11.5					6.1	4.8	7.2																				d50 (mm)																																				^{1 =} Widths and depths for annual measurements will be based on the baseline bankfull datum regardless of dimensional/depositional development. Input the elevation used as the datum, which should be consistent and based on the baseline datum established. If the performer has inherited the project and cannot acquire the datum used for prior years this must be discussed with EEP. If this cannot be resolved in time for a given years report submission a footnote in this should be included that states: "It is uncertain if the monitoring datum has been consistent over the monitoring history, which may influence calculated values. Additional data from a prior performer is being acquired to provide confirmation. Values will be recalculated in a future submission based on a consistent datum if determined to be necessary."					Tab	le 13	b. Mo	onitor	ing D	ata -	Dime	ensio	nal Mo	orpho	logy	Sumr	nary (Dime	nsior	nal Pa	aramet	ers -	Cros	s Se	ctions	s)									--	------	-----	---------	---------	--------	-------	--------	-------	-------	--------	---------	----------	-------	--------	-------	---------	------	--------	--------	--------	-------	-------	------	--------	----	--	--	---	---	---	---	--								Pr	oject	Nam	e/Nur	nber	(Allia	nce H	leadw	aters/	3079/	36) - S	egme	ent/Re	each:	UT2 (996.7	feet)														C	Cross S	Section	1 (Pod	ol)			C	ross S	Section	2 (Riffl	e)																					Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+																				Record elevation (datum) used																																		Bankfull Width (ft)								9.9	10.9	10.4																								Floodprone Width (ft)	NA	NA	NA					100	100																									Bankfull Mean Depth (ft)								0.6		0.6																								Bankfull Max Depth (ft)			_					1.3	1.5	1.3																								Bankfull Cross Sectional Area (ft ²)	8.8	8.8	8.8					6.1	6.1	6.1																								Bankfull Width/Depth Ratio	NA	NA	NA						19.5	_																								Bankfull Entrenchment Ratio									9.2																									Low Bank Height (ft)								1.3		1.3																								Bankfull Bank Height Ratio			0.80						1.07																									Cross Sectional Area between end pins (ft ²)	10.9	6.7	12.9					10.8	10.1	10.7																								d50 (mm)																																									_																											Based on fixed baseline bankfull elevation ¹																																		Record elevation (datum) used																																		Bankfull Width (ft)																																		Floodprone Width (ft)																																		Bankfull Mean Depth (ft)																																		Bankfull Max Depth (ft)												Ì		1							Ī							Î						Bankfull Cross Sectional Area (ft²)																					Ī		İ	Ì	Ì					Ī	Ì			Bankfull Width/Depth Ratio											1																							Bankfull Entrenchment Ratio		1	1					1	1		1	1		1	1																			Low Bank Height (ft)												1																						Bankfull Bank Height Ratio												1																	1					Cross Sectional Area between end pins (ft²)		1	1						1		1	1																						d50 (mm)											1	1																					^{1 =} Widths and depths for annual measurements will be based on the baseline bankfull datum regardless of dimensional/depositional development. Input the elevation used as the datum, which should be consistent and based on the baseline datum established. If the performer has inherited the project and cannot acquire the datum used for prior years this must be discussed with EEP. If this cannot be resolved in time for a given years report submission a footnote in this should be included that states: "It is uncertain if the monitoring datum has been consistent over the monitoring history, which may influence calculated values. Additional data from a prior performer is being acquired to provide confirmation. Values will be recalculated in a future submission based on a consistent datum if determined to be necessary."					Tab	le 13													ensior ent/Re						ction	s)										--	------	------	---------	---------	--------	-----	-----	------	------	------	---------	-----	-----	-----	------	------	------	------------------	-----
baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+				$\overline{}$			Record elevation (datum) used																																			Bankfull Width (ft)								8.9	9.0	10.2					13.6	14.8	13.5					7.3	8.0	7.9											Floodprone Width (ft)	NA	NA	NA					100	100	100					NA	NA	NA					100	100	100									·		Bankfull Mean Depth (ft)								0.6	0.6	0.5					0.9	0.9	0.9					0.6	0.5	0.5											Bankfull Max Depth (ft)								1.0		1.0					1.7	2.0	2.1					1.0	1.0	1.1											Bankfull Cross Sectional Area (ft ²)	10.2	10.2	10.2					5.4	5.4	5.4					12.7		12.7					4.3	4.3	4.3											Bankfull Width/Depth Ratio									15.0						NA		NA						14.9												Bankfull Entrenchment Ratio			NA						11.1	9.8					NA	NA	NA					13.7													Low Bank Height (ft)			1.6					1.0	1.1	1.1					1.7	2.0	1.8					1.0	1.0	1.0											Bankfull Bank Height Ratio			0.98						1.00													1.00	1.00												Cross Sectional Area between end pins (ft ²)	14.1	17.1	13.7					16.8	18.4	17.8					22.9	16.2	21.8					7.6	10.9	9.0											d50 (mm)																																																																						Based on fixed baseline bankfull elevation ¹																																			Record elevation (datum) used																																			Bankfull Width (ft)																																			Floodprone Width (ft)																																			Bankfull Mean Depth (ft)																																			Bankfull Max Depth (ft)		Ì	Ì	Ì	Ì			1			1																								Bankfull Cross Sectional Area (ft²)																															$\overline{}$				Bankfull Width/Depth Ratio																															\longrightarrow				Bankfull Entrenchment Ratio																															\longrightarrow				Low Bank Height (ft)																															\rightarrow				Bankfull Bank Height Ratio																												1				, —			Cross Sectional Area between end pins (ft²)																															\longrightarrow				d50 (mm)																																, 		^{1 =} Widths and depths for annual measurements will be based on the baseline bankfull datum regardless of dimensional/depositional development. Input the elevation used as the datum, which should be consistent and based on the baseline datum established. If the performer has inherited the project and cannot acquire the datum used for prior years this must be discussed with EEP. If this cannot be resolved in time for a given years report submission a footnote in this should be included that states: "It is uncertain if the monitoring datum has been consistent over the monitoring history, which may influence calculated values. Additional data from a prior performer is being acquired to provide confirmation. Values will be recalculated in a future submission based on a consistent datum if determined to be necessary."					Tab	le 13	d. Mo	nitor	ing D	ata -	Dime	ensior	nal Mo	orpho	logy	Sumr	mary	Dime	nsior	nal Pa	arame	ters -	- Cro	ss Se	ction	s)						 		--	------	-------------	--------	-------------	--------	-------	--	-------	-------	--	---------	--------	-------	------	------	------	------	-------	--------	-------	--------	-------	-------	-------	----	---	---	--	--	-------	-------------------																						UT4					,										C	ross S	ection	1 (Pod		.,				Section					, ,	3				(00000												Based on fixed baseline bankfull elevation ¹	Base						MY+	Base			MY3			MY+																			Record elevation (datum) used																																	Bankfull Width (ft)	10.9	11.8	11.9					7.5	11.7	7.5																							Floodprone Width (ft)	NA	NA	NA					100	100	100																							Bankfull Mean Depth (ft)			0.7					0.5	0.3	0.5																							Bankfull Max Depth (ft)								0.9		0.9																					i .		Bankfull Cross Sectional Area (ft ²)	7.9	7.9						3.8	3.8	3.8																							Bankfull Width/Depth Ratio	NA	NA							36.0																								Bankfull Entrenchment Ratio								13.3	8.5																						i .		Low Bank Height (ft)								0.9																							ĺ.		Bankfull Bank Height Ratio									1.00																						 		Cross Sectional Area between end pins (ft ²)	13.3	13.1	14.2					8.0	5.3	5.9																					 1		d50 (mm)																																																																		Based on fixed baseline bankfull elevation ¹																															 Ī		Record elevation (datum) used																															 i T		Bankfull Width (ft)																															Ī		Floodprone Width (ft)																															 i T		Bankfull Mean Depth (ft)																															 Π		Bankfull Max Depth (ft)																														, — 1	 $\overline{}$		Bankfull Cross Sectional Area (ft²)										 																				, — —	 $\overline{}$		Bankfull Width/Depth Ratio	,																													,——			Bankfull Entrenchment Ratio					1	1					1		1		1	1			1								1	1			 $\overline{}$		Low Bank Height (ft)																															 _		Bankfull Bank Height Ratio	1				1	+	 	-	+	 	+	1	1		1	+			1	1							1	 			 _		<u> </u>											1				1													1			 _		Cross Sectional Area between end pins (ft²)																															 		d50 (mm)					I							1							I							I	I			, ,	4	^{1 =} Widths and depths for annual measurements will be based on the baseline bankfull datum regardless of dimensional/depositional development. Input the elevation used as the datum, which should be consistent and based on the baseline datum established. If the performer has inherited the project and cannot acquire the datum used for prior years this must be discussed with EEP. If this cannot be resolved in time for a given years report submission a footnote in this should be included that states: "It is uncertain if the monitoring datum has been consistent over the monitoring history, which may influence calculated values. Additional data from a prior performer is being acquired to provide confirmation. Values will be recalculated in a future submission based on a consistent datum if determined to be necessary."	Parameter	Max SD ⁴ n																																																																																																																																			
--	-----------------------		Dimension and Substrate - Riffle Only Min Mean Med Max SD n M			Bankfull Width (ft) 7.1 7.9 8.6 2 7 11.9 16.7 2 7.3 8.15 9 2 1 10 100 2 100 100 100 100 100 100 100 100 100 100 100 100 100 100 2 100 100 100 100 2 100 100 100 2 100 100 100 2 100 100 100 2 100 100 100 2 100 100 100 2 100 100 100 2 100 100 100 2 100 100 100 2 100 100 100 2 100 100 100 2 100 100 100 2 100 100 100 2 100 100 100 2 100 100 100 2 100 100 100 2 100 100 100 2 100	Max SD ⁴		Floodprone Width (ft) 100			Bankfull Mean Depth (ft) 0.5 0			Bankfull Max Depth (ft) 0.9			Bankfull Cross Sectional Area (ff) 3.6			Width/Depth Ratio 14 15.6 17.2 2 13.8 23.6 33.4 2 14.7 16.6 18.5 2			Entrenchment Ratio 11.6			Low Bank Height (fit) 0.9			Bank Height Ratio 1.0 1.			Profile			Riffle Length (ft) 9 28.6 28.45 49.5 10.7 35			Riffle Slope (ft/ft) 1E-04 0.01 0.009 0.021 0.007 13			Riffle Slope (ft/ft) 1E-04 0.01 0.009 0.021 0.007 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			Pool Length (ft) 4.3 10.9 9.14 39.8 7.5 27			Pool Spacing (ft) 25.3 49.8 50.71 89.2 14.7 35			Pattern Channel Beltwidth (ft) Radius of Curvature (ft) Pattern data will not typically be collected unless visual data, dimensional data or profile data indicate			Pattern Channel Beltwidth (ft) Radius of Curvature (ft) Pattern data will not typically be collected unless visual data, dimensional data or profile data indicate			Radius of Curvature (ft) Pattern data will not typically be collected unless visual data, dimensional data or profile data indicate			Pattern data will not typically be collected unless visual data, dimensional data or profile data indicate			Rc:Bankfull width (ft/ft) Pattern data will not typically be collected unless visual data, dimensional data or profile data indicate significant shifts from baseline						Meander Wavelength (ft)			Meander Width Ratio						Additional Reach Parameters			Rosgen Classification C5			Channel Thalweg length (ft) 2033			Sinuosity (ft) 1.26 -1.29			Water Surface Slope (Channel) (ft/ft) 0.0049			BF slope (ft/ft)			³ Ri% / Ru% / P% / G% / S%			³ SC% / Sa% / G% / C% / B% / Be%			³ d16 / d35 / d50 / d84 / d95 /			² % of Reach with Eroding Banks 0			Channel Stability or Habitat Metric			Biological or Other		Shaded cells indicate that these will typically not be filled in. ^{1 =} The distributions for these parameters can include information from both the cross-section measurements and the longitudinal profile. 2 = Proportion of reach exhibiting banks that are eroding based on the visual survey from visual assessment table 3 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave 4. = Of value/needed only if the n exceeds 3																			_				ch Dat		_																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																											
	--	-------	-------	-------	-------	-----------------	----	------	------	------	------	-----------------	------	------	----------------	-----	--------------	-----------------	------------	-----------	-----------	-----------	-------------------------	-----------------------	------------------	----------	------------	-----------	----------	-----------------	---	-----	------	----------	------	-----------------	---		Parameter			Base	eline					M'		oject	Name	/Num	ber (<i>F</i>		e Hea Y-2	adwat	ers/97	(086) 	- Segr		Reach Y- 3	: UT1	/Reac	h 3 (1	463 te		Y- 4					M'	Y- 5																																										Dimension and Substrate - Riffle only	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n		Bankfull Width (ft)			10.4	10.4		1	14.6		14.6	14.6		1	11.6			11.6		1																				Floodprone Width (ft)			100	100		1	100		100	100		1	100			100		1										<u> </u>					<u> </u>					Bankfull Mean Depth (ft)	0.8		0.8	8.0		1	0.8		0.8	0.8		1	0.7			0.7		1																				¹ Bankfull Max Depth (ft)	1.4		1.4	1.4		1	1.2		1.2	1.2		1	1.3			1.3		1																				Bankfull Cross Sectional Area (ft ²)	8.4		8.4	8.4		1	8.4		8.4	8.4		1	8.4			8.4		1																				Width/Depth Ratio	13		13	13		1	18.3		18.3	18.3		1	15.9			15.9		1																				Entrenchment Ratio	9.6		9.6	9.6		1	6.8		6.8	6.8		1	8.6			8.6		1																				Low Bank Height (ft)	1.4		1.4	1.4		1	1.3		1.3	1.3		1	1.3			1.3		1																				¹ Bank Height Ratio	1.0		1.0	1.0		1	1.1		1.1	1.1		1	0.98			0.98		1																				Profile																																						Riffle Length (ft)	12.2	39.6	38.7	63.2	12.7	23																																Riffle Slope (ft/ft)	8E-04	0.006	0.003	0.029	0.009	10																																Pool Length (ft)	4.7	13	11.75	32	6.4	22																																Pool Max depth (ft)						2																																Pool Spacing (ft)	37.3	68	73.78	87.5	13.9	22																																Pattern																																						Channel Beltwidth (ft)																																						Radius of Curvature (ft)																										eu.												Rc:Bankfull width (ft/ft)																Patte	ern data	will not t	ypically	be collec	cted unle	ess visua shifts fro	il data, d om hase	imensioi line	nai data	or profile	e data ir	ndicate										Meander Wavelength (ft)																				- J	grimodrit	Jimto ire	JIII 5450															Meander Width Ratio																																						Additional Reach Parameters																																						Rosgen Classification			C	5																																		Channel Thalweg length (ft)			14	63																																		Sinuosity (ft)				35																																		Water Surface Slope (Channel) (ft/ft)			0.0	028																																		BF slope (ft/ft)		-	_	T																																		³ Ri% / Ru% / P% / G% / S%																																						³ SC% / Sa% / G% / C% / B% / Be%																																						³ d16 / d35 / d50 / d84 / d95 /																																						² % of Reach with Eroding Banks			()																																		Channel Stability or Habitat Metric																																						Biological or Other																															1						Shaded cells indicate that these will typically not be filled in. 1 = The distributions for these parameters can include information from both the cross-section measurements and the longitudinal profile. 2 = Proportion of reach exhibiting banks that are eroding based on the visual survey from visual assessment table 3 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave 4. = Of value/needed only if the n exceeds 3												D							_				h Data		_														---	------	------	-------	-------	-----------------	----------	------	------	------	------	-----------------	-------	--------	------	-----	---------------	-----------	-------------	----------	-----------------	-----------	---------------	-----------------	----------	----------	----------	-----------	----------	-----------------	---	-------------------------	------	-----	--------------	-----------------	----------------		Parameter			Base	eline					M'	Y-1	Proj	ect N	lame/r	dmur		iiance Y-2	Неас	wate	rs/9/(J86) - <u>:</u>		ent/Re Y-3	eacn:	U12 (996.7	reet)		IY- 4			$\overline{\mathbf{T}}$		M	Y- 5						Ι		I	11	ı	l		I	I	1			Ι	T	Τ.,	11			Т.,	1	T	1			T	Т	1	11			Т.,	T		11			Dimension and Substrate - Riffle only		Mean	Med	Max	SD ⁴	n	Min	Mean		Max	SD ⁴	n	Min	Mean	Med	Max		n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mear	Med	Max	SD ⁴	n		Bankfull Width (ft)			9.9	9.9	<u> </u>	1	10.9		10.9	10.9		1	10.37			10.37		1	1		1							-	_		—		1	+		 /		Floodprone Width (ft)			100	100	.	1	100		100	100		1	100			100		1	<u> </u>		<u> </u>								+		+-		1	+		 /		Bankfull Mean Depth (ft)			0.6	0.6	1	1	0.6		0.6	0.6			0.586			0.586	+				1													+		 /		¹ Bankfull Max Depth (ft)			1.3	1.3	<u> </u>	1	1.5		1.5	1.5		1	1.328			1.328		1	1		1							-	_		—		1	+		 /		Bankfull Cross Sectional Area (ft²)			6.1	6.1		1	6.1		6.1	6.1		1	6.1			6.1		1			<u> </u>													 		 _/		Width/Depth Ratio			16.1	16.1		1	19.5		19.5	19.5		1	17.7			17.7		1																		 /		Entrenchment Ratio			10.1			1	9.2		9.2	9.2		1	9.6			9.6		1																		 _/		Low Bank Height (ft)		_	1.3	1.3		1	1.5		1.5	1.5		1	1.34			1.34	_	1																		 /		¹ Bank Height Ratio	1.0		1.0	1.0		1	1.1		1.1	1.1		1	1.009			1.009	1	1												_				—		Ш/		Profile																																				lacksquare		Riffle Length (ft)	15.7	29.9	28.44	52.3	10.8	11																														lacksquare		Riffle Slope (ft/ft)						•																												4		lacksquare		Pool Length (ft)					7.4	17																														lacksquare		Pool Max depth (ft)						1																														lacksquare		Pool Spacing (ft)	34.5	55.6	54.92	73.1
length (ft)			99	6.7																																		Sinuosity (ft)			1.:	22																																		Water Surface Slope (Channel) (ft/ft)			0.0	031																																		BF slope (ft/ft)																																						³ Ri% / Ru% / P% / G% / S%																																						³ SC% / Sa% / G% / C% / B% / Be%																																						³ d16 / d35 / d50 / d84 / d95 /																																						² % of Reach with Eroding Banks			()																																		Channel Stability or Habitat Metric																																						Biological or Other																																					Shaded cells indicate that these will typically not be filled in. 1 = The distributions for these parameters can include information from both the cross-section measurements and the longitudinal profile. 2 = Proportion of reach exhibiting banks that are eroding based on the visual survey from visual assessment table 3 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave 4. = Of value/needed only if the n exceeds 3																			_				h Data		_														---	------	----------	-------	-------	-----------------	----	------	--	----------	------	-----------------	--------	-------	-------	-----	-------	-----------------	------------	----------	---------	-----	--------------------------	-----------------	--------	----------	---------	-----------	---------	-----------------	---	-----	------	-----	------------	-----------------	----------													Proj	ect Na	me/N	umbe	_		Head	water	s/970	86) - S		nt/Re	ach: l	JT3 (1	914.8	feet)					T							Parameter			Base	eline					<u>M</u>	Y-1					M`	Y-2					M	Y- 3					M	Y- 4					MY	- 5				Dimension and Substrate - Riffle only	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n		Bankfull Width (ft)	7.3		8.1	8.9		2	8		8.5	9		2	7.872	9.031		10.19		2																		i		Floodprone Width (ft)	100		100	100		2	100		100	100		2	100	100		100		2																		í		Bankfull Mean Depth (ft)	0.6		0.6	0.6		2	0.5		0.6	0.6		2	0.53	0.54		0.55		2																		1		¹ Bankfull Max Depth (ft)	1		1	1		2	1		1.1	1.1		2	0.98	1.045		1.11		2																		i		Bankfull Cross Sectional Area (ft²)	4.3		4.9	5.4		2	4.3		4.9	5.4		2	4.3	4.85		5.4		2																		i		Width/Depth Ratio			13.5	14.7		2	14.9		15	15		2	14.41	16.82		19.23	5	2																		i		Entrenchment Ratio	11.2		12.5	13.7		2	11.1		11.8	12.5		2	9.8	11.25		12.7		2																		1		Low Bank Height (ft)	1.0		1.0	1.0		2	1.0		1.1	1.1		2	1.024	1.072		1.12		2																		<u> </u>		¹ Bank Height Ratio	1.0		1.0	1.0		2	1.0		1.0	1.0		2	0.921	1.03		1.138		2																		1		Profile		<u> </u>						<u>. </u>	_		_																											Riffle Length (ft)	22.1	39	35.67	60.9	10	29																																Riffle Slope (ft/ft)						14																																Pool Length (ft)	7	10.7	10.06	16.8	2.5	28																																Pool Max depth (ft)						2																																Pool Spacing (ft)	45.6	63	60.35	91.7	11.3	28																																Pattern																																						Channel Beltwidth (ft)																																						Radius of Curvature (ft)																D-#-		44 مصالك					الماملات الما	· ·- ·		CI	l-4- :-	-l:4-										Rc:Bankfull width (ft/ft)																Patte	ern data	vIII not t	ypically			ess visual shifts fro			nai data	or prom	e data ir	idicate										Meander Wavelength (ft)		\sqcup																		•	•																	Meander Width Ratio																																						Additional Reach Parameters																																						Rosgen Classification			С																																			Channel Thalweg length (ft)			191																																			Sinuosity (ft)				1.38																																		Water Surface Slope (Channel) (ft/ft)			0.00	033																																		BF slope (ft/ft)			ı	1		ı																																³ Ri% / Ru% / P% / G% / S%																																						³ SC% / Sa% / G% / C% / B% / Be%																																				.		³ d16 / d35 / d50 / d84 / d95 /																																						² % of Reach with Eroding Banks											_				-	-	-			-	-	-				-	-	-	-			-						Channel Stability or Habitat Metric																			1																			Biological or Other																																					Shaded cells indicate that these will typically not be filled in. 1 = The distributions for these parameters can include information from both the cross-section measurements and the longitudinal profile. 2 = Proportion of reach exhibiting banks that are eroding based on the visual survey from visual assessment table 3 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave 4. = Of value/needed only if the n exceeds 3																			_		Stream				_		5 - 4)												---	------	--	------	-------	------	---	------	------	------	------	-----------------	-------	-------	------	-----	---------------	-----------------	------------	-------------	-----------	--	---------------------------	-----------------------	--------------	-----------	---------------	-----------	---------	-----	---	-----	-----	-------	----------	-----	--		Parameter			Base	eline					M	Y-1	Proj	ect N	ame/r	dmur		iiance Y-2	Head	iwate	rs/9/(086) -		ent/Re Y- 3	eacn:	U14 (530.9 	reet)		IY- 4					N	/IY- 5																					_										_											Dimension and Substrate - Riffle only			Med	Max	SD⁴	n	Min	Mean		Max	SD ⁴	n		Mean	Med		SD ⁴	n	Min	Mean	Med	Max	SD⁴	n	Min	Mean	Med	Max	SD⁴	n	Min	Mea	n Med	d Max	SD⁴	n		Bankfull Width (ft)			7.5	7.5		1	11.7		11.7	11.7		1	7.5			7.5		1																		 /		Floodprone Width (ft)			100	100		1	100		100	100		1	100.0			100.0)	1	-																	/		Bankfull Mean Depth (ft)			0.5	0.5		1	0.3		0.3	0.3		1	0.5			0.5	-	1			+	+	-			 	-	-	4				+	+-	-	 		¹ Bankfull Max Depth (ft)			0.9	0.9	
														Pool Max depth (ft)						1																																Pool Spacing (ft)	21.2	49.6	46.5	75.4	15.6	9													_																			Pattern						•													_																			Channel Beltwidth (ft)																															_							Radius of Curvature (ft)																Dotte	oro doto	النب	n minally (be collec	امدام الماء		doto d	imanaia	nal data	or profil	la data i	ndicata			_							Rc:Bankfull width (ft/ft)																Palle	em data	wiii not t	ypically	be collec	cied uni anificant	ess visua t shifts fro	ıı data, d om base	line line	nai dala	or broili	ie data i	nuicate			_							Meander Wavelength (ft)																					9										_							Meander Width Ratio																																						Additional Reach Parameters																																						Rosgen Classification			С	5																																		Channel Thalweg length (ft)				0.9																																		Sinuosity (ft)				36																																		Water Surface Slope (Channel) (ft/ft)			0.0	051																																		BF slope (ft/ft)		<u>. </u>		T																																		³ Ri% / Ru% / P% / G% / S%																																						³ SC% / Sa% / G% / C% / B% / Be%																																						³ d16 / d35 / d50 / d84 / d95 /																																		<u> </u>				² % of Reach with Eroding Banks																																						Channel Stability or Habitat Metric																																						Biological or Other																																					Shaded cells indicate that these will typically not be filled in. 1 = The distributions for these parameters can include information from both the cross-section measurements and the longitudinal profile. 2 = Proportion of reach exhibiting banks that are eroding based on the visual survey from visual assessment table 3 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave 4. = Of value/needed only if the n exceeds 3	Site	Alliance Headwaters		-------------	--------------------------		Watershed:	Neuse River, 03020201		XS ID	UT 1 Reach 3, XS - 1		Feature	Pool		Date:	3/10/2021		Field Crew:	Adams, Lawson, Perkinson		0.1	104.39		------	--------		2.7	104.38		4.7	104.05		6.2	103.98		7.1	103.61		8.0	103.47		8.8	103.65		9.5	103.36		10.3	102.86		11.1	102.39		12.2	101.98		12.9	101.84		15.1	102.26		16.2	102.72		17.3	102.90		18.2	103.17		18.8	103.38		19.8	103.60		21.3	103.84		22.7	104.15		24.2	104.31		25.6	104.19		26.7	104.21																									Station Elevation	SUMMARY DATA			--------------------------------	-------		Bankfull Elevation:	104.0		Bankfull Cross-Sectional Area:	14.5		Bankfull Width:	15.1		Flood Prone Area Elevation:	NA		Flood Prone Width:	NA		Max Depth at Bankfull:	2.1		Low Bank Height:	2.1		Mean Depth at Bankfull:	1.0		W / D Ratio:	NA		Entrenchment Ratio:	NA		Bank Height Ratio:	1.04		Stream Type	C5		-------------	----		-------------	----		Site	Alliance Headwaters		-------------	--------------------------		Watershed:	Neuse River, 03020201		XS ID	UT 1 Reach 3, XS - 2		Feature	Pool		Date:	3/10/2021		Field Crew:	Adams, Lawson, Perkinson		0.3	104.89		------	--------		2.1	105.00		3.9	104.96		5.3	104.63		7.3	104.32		9.1	104.07		10.3	103.86		11.3	103.61		12.0	103.33		12.6	103.08		13.5	102.74		14.3	102.57		14.9	102.52		15.6	102.72		16.1	102.98		16.7	103.15		17.4	103.51		18.2	103.99		19.1	104.34		20.0	104.78		22.7	105.13		25.2	105.13		27.9	105.10		29.7	105.13																						Station Elevation	SUMMARY DATA			--------------------------------	-------		Bankfull Elevation:	104.9		Bankfull Cross-Sectional Area:	18.5		Bankfull Width:	16.9		Flood Prone Area Elevation:	NA		Flood Prone Width:	NA		Max Depth at Bankfull:	2.4		Low Bank Height:	2.4		Mean Depth at Bankfull:	1.1		W / D Ratio:	NA		Entrenchment Ratio:	NA		Bank Height Ratio:	1.02		Stream Type C5		----------------		----------------		Site	Alliance Headwaters		-------------	--------------------------		Watershed:	Neuse River, 03020201		XS ID	UT 1 Reach 3, XS - 3		Feature	Riffle		Date:	3/10/2021		Field Crew:	Adams, Lawson, Perkinson		Station	Elevation		---------	-----------					0.5	105.68		2.9	105.62		5.2	105.72		7.7	105.84		9.6	105.56		10.7	105.33		11.7	105.02		13.6	104.56		15.2	104.55		15.6	104.40		16.2	104.28		16.9	104.28		17.3	104.44		18.0	104.76		18.9	104.89		20.0	105.30		21.1	105.65		23.4	105.53		26.0	105.54		29.8	105.55																										_						SUMMARY DATA			--------------------------------	-------		Bankfull Elevation:	105.6		Bankfull Cross-Sectional Area:	8.4		Bankfull Width:	11.6		Flood Prone Area Elevation:	106.9		Flood Prone Width:	100.0		Max Depth at Bankfull:	1.3		Low Bank Height:	1.3		Mean Depth at Bankfull:	0.7		W / D Ratio:	15.9		Entrenchment Ratio:	8.6		Bank Height Ratio:	0.98		Stream Type	C5		-------------	----		-------------	----		Site	Alliance Headwaters		-------------	--------------------------		Watershed:	Neuse River, 03020201		XS ID	UT 1 Reach 2, XS - 4		Feature	Pool		Date:	3/10/2021		Field Crew:	Adams, Lawson, Perkinson		Station	Elevation		---------	-----------		0.0	108.18		2.6	108.24		3.9	108.07		5.8	108.41		7.3	108.20		8.7	107.99		10.3	107.71		11.5	107.56		12.1	107.21		12.7	106.89		13.4	106.72		14.1	106.66		14.9	106.74		15.5	107.01		16.0	107.49		16.7	107.91		17.6	108.44		19.6	108.56		21.7	108.56		24.6	108.47																																			SUMMARY DATA			--------------------------------	-------		Bankfull Elevation:	108.3		Bankfull Cross-Sectional Area:	9.0		Bankfull Width:	11.2		Flood Prone Area Elevation:	NA		Flood Prone Width:	NA		Max Depth at Bankfull:	1.7		Low Bank Height:	1.8		Mean Depth at Bankfull:	0.8		W / D Ratio:	NA		Entrenchment Ratio:	NA		Bank Height Ratio:	1.04		Stream Type C5	Stream Type	C5		----------------	-------------	----		----------------	-------------	----		Site	Alliance Headwaters		-------------	--------------------------		Watershed:	Neuse River, 03020201		XS ID	UT 1 Reach 2, XS - 5		Feature	Riffle		Date:	3/10/2021		Field Crew:	Adams, Lawson, Perkinson		Station	Elevation		---------	-----------		0.2	110.75		2.5	110.71		6.6	110.87		8.9	110.72		11.3	110.55		13.0	110.05		13.9	109.44		14.5	109.44		15.1	109.45		15.8	109.45		16.8	110.19		18.1	110.50		20.4	110.58		22.1	110.61		24.8	110.61		26.7	110.49		28.6	110.28																													SUMMARY DATA			--------------------------------	-------		Bankfull Elevation:	110.6		Bankfull Cross-Sectional Area:	4.4		Bankfull Width:	9.0		Flood Prone Area Elevation:	111.7		Flood Prone Width:	100.0		Max Depth at Bankfull:	1.1		Low Bank Height:	1.1		Mean Depth at Bankfull:	0.5		W / D Ratio:	18.5		Entrenchment Ratio:	11.1		Bank Height Ratio:	0.99		Stream Type	C5		-------------	----		-------------	----		Site	Alliance Headwaters		-------------	--------------------------		Watershed:	Neuse River, 03020201		XS ID	UT 1 Reach 2, XS - 6		Feature	Pool		Date:	3/10/2021		Field Crew:	Adams, Lawson, Perkinson		Station	Elevation		---------	-----------		0.1	113.4		2.5	113.3		6.1	113.3		8.6	113.1		10.4	112.5		11.1	112.4		11.7	112.3		12.2	112.2		12.9	112.3		13.4	112.5		14.9	113.0		16.7	113.3		19.3	113.6		21.6	113.6		23.5	113.6																				SUMMARY DATA			--------------------------------	-------		Bankfull Elevation:	113.4		Bankfull Cross-Sectional Area:	6.1		Bankfull Width:	11.5		Flood Prone Area Elevation:	NA		Flood Prone Width:	NA		Max Depth at Bankfull:	1.2		Low Bank Height:	1.0		Mean Depth at Bankfull:	0.5		W / D Ratio:	NA		Entrenchment Ratio:	NA		Bank Height Ratio:	0.90		Stream Type	C5		-------------	----		-------------	----		Site	Alliance Headwaters		-------------	--------------------------		Watershed:	Neuse River, 03020201		XS ID	UT 1 Reach 2, XS - 7		Feature	Pool		Date:	3/10/2021		Field Crew:																																																																																																																																																																																																																																																																																																																																																																																																
Adams, Lawson, Perkinson | | Station | Elevation | |---------|-----------| | 0.0 | 114.2 | | 3.3 | 114.2 | | 6.3 | 114.1 | | 8.2 | 113.2 | | 8.7 | 112.5 | | 9.5 | 112.3 | | 10.8 | 112.3 | | 11.4 | 112.7 | | 12.1 | 113.3 | | 12.7 | 113.6 | | 13.8 | 113.9 | | 15.6 | 114.1 | | 17.7 | 114.2 | | 19.4 | 114.2 | | 20.5 | 114.3 | SUMMARY DATA | | |--------------------------------|-------| | Bankfull Elevation: | 114.0 | | Bankfull Cross-Sectional Area: | 6.8 | | Bankfull Width: | 8.0 | | Flood Prone Area Elevation: | NA | | Flood Prone Width: | NA | | Max Depth at Bankfull: | 1.7 | | Low Bank Height: | 1.8 | | Mean Depth at Bankfull: | 0.9 | | W / D Ratio: | NA | | Entrenchment Ratio: | NA | | Bank Height Ratio: | 1.07 | | Stream Type | C5 | |-------------|----| |-------------|----| | Site | Alliance Headwaters | |-------------|--------------------------| | Watershed: | Neuse River, 03020201 | | XS ID | UT 1 Reach 1, XS - 8 | | Feature | Riffle | | Date: | 3/10/2021 | | Field Crew: | Adams, Lawson, Perkinson | | Station | Elevation | |---------|-----------| | 0.0 | 115.22 | | 5.0 | 115.19 | | 7.4 | 115.10 | | 8.1 | 114.80 | | 8.6 | 114.73 | | 9.3 | 114.51 | | 9.9 | 114.44 | | 10.1 | 114.29 | | 10.4 | 114.37 | | 10.6 | 114.30 | | 10.9 | 114.30 | | 11.5 | 114.35 | | 12.7 | 114.55 | | 12.7 | 114.65 | | 13.8 | 114.70 | | 14.3 | 115.10 | | 17.3 | 115.26 | | 21.5 | 115.21 | SUMMARY DATA | | |--------------------------------|-------| | Bankfull Elevation: | 115.1 | | Bankfull Cross-Sectional Area: | 3.6 | | Bankfull Width: | 7.3 | | Flood Prone Area Elevation: | 115.9 | | Flood Prone Width: | 100.0 | | Max Depth at Bankfull: | 0.8 | | Low Bank Height: | 0.9 | | Mean Depth at Bankfull: | 0.5 | | W / D Ratio: | 14.7 | | Entrenchment Ratio: | 13.8 | | Bank Height Ratio: | 1.12 | | Stream Type | C5 | |-------------|----| |-------------|----| | Site | Alliance Headwaters | |-------------|--------------------------| | Watershed: | Neuse River, 03020201 | | XS ID | UT 2, XS - 1 | | Feature | Pool | | Date: | 3/10/2021 | | Field Crew: | Adams, Lawson, Perkinson | | Station | Elevation | |---------|-----------| | -0.1 | 104.1 | | 2.1 | 104.2 | | 4.1 | 104.1 | | 6.4 | 104.0 | | 8.2 | 103.8 | | 9.9 | 103.5 | | 11.1 | 103.4 | | 12.1 | 103.3 | | 13.4 | 103.3 | | 14.7 | 103.1 | | 15.6 | 103.3 | | 16.1 | 103.6 | | 17.1 | 103.7 | | 18.5 | 104.0 | | 20.2 | 104.1 | | 21.9 | 104.1 | | 23.8 | 104.2 | | 25.1 | 104.4 | | 25.9 | 104.1 | | | | | | | | | | | | | | | | | SUMMARY DATA | | |--------------------------------|-------| | Bankfull Elevation: | 104.2 | | Bankfull Cross-Sectional Area: | 8.8 | | Bankfull Width: | 18.2 | | Flood Prone Area Elevation: | NA | | Flood Prone Width: | NA | | Max Depth at Bankfull: | 1.1 | | Low Bank Height: | 0.9 | | Mean Depth at Bankfull: | 0.5 | | W / D Ratio: | NA | | Entrenchment Ratio: | NA | | Bank Height Ratio: | 0.80 | | Stream Type | C5 | |-------------|----| |-------------|----| | Site | Alliance Headwaters | |-------------|--------------------------| | Watershed: | Neuse River, 03020201 | | XS ID | UT 2, XS - 1 | | Feature | Riffle | | Date: | 3/10/2021 | | Field Crew: | Adams, Lawson, Perkinson | | Station | Elevation | |---------|-----------| | 0.2 | 106.8 | | 2.5 | 106.5 | | 4.3 | 106.3 | | 5.9 | 106.0 | | 7.6 | 105.1 | | 8.3 | 105.2 | | 9.0 | 105.4 | | 9.7 | 105.5 | | 10.8 | 106.0 | | 11.9 | 106.2 | | 13.0 | 106.5 | | 14.0 | 106.5 | | 15.1 | 106.5 | | 16.3 | 106.5 | | | | | | | | SUMMARY DATA | | |--------------------------------|-------| | Bankfull Elevation: | 106.5 | | Bankfull Cross-Sectional Area: | 6.1 | | Bankfull Width: | 10.4 | | Flood Prone Area Elevation: | 107.8 | | Flood Prone Width: | 100.0 | | Max Depth at Bankfull: | 1.3 | | Low Bank Height: | 1.3 | | Mean Depth at Bankfull: | 0.6 | | W / D Ratio: | 17.7 | | Entrenchment Ratio: | 9.6 | | Bank Height Ratio: | 1.01 | | Site | Alliance Headwaters | |-------------|--------------------------| | Watershed: | Neuse River, 03020201 | | XS ID | UT 3 Reach 2, XS - 1 | | Feature | Pool | | Date: | 3/10/2021 | | Field Crew: | Adams, Lawson, Perkinson | | riela Ciew. | | | |-------------|-----------|--| | | | | | Station | Elevation | | | 0.0 | 110.5 | | | 2.5 | 110.5 | | | 5.5 | 110.4 | | | 8.6 | 109.8 | | | 10.3 | 109.7 | | | 11.4 | 109.2 | | | 12.9 | 108.8 | | | 13.8 | 108.8 | | | 14.9 | 109.4 | | | 15.8 | 109.6 | | | 17.2 | 110.2 | | | 19.1 | 110.3 | | | 21.5 | 110.4 | | | 23.6 | 110.2 | | | 24.7 | 110.1 | SUMMARY DATA | | |--------------------------------|-------| | Bankfull Elevation: | 110.4 | | Bankfull Cross-Sectional Area: | 10.2 | | Bankfull Width: | 16.6 | | Flood Prone Area Elevation: | NA | | Flood Prone Width: | NA | | Max Depth at Bankfull: | 1.6 | | Low Bank Height: | 1.6 | | Mean Depth at Bankfull: | 0.6 | | W / D Ratio: | NA | | Entrenchment Ratio: | NA | | Bank Height Ratio: | 0.98 | | | Stream Type | C5 | |--|-------------|----| |--|-------------|----| | Site | Alliance Headwaters | |-------------|--------------------------| | Watershed: | Neuse River, 03020201 | | XS ID | UT 3 Reach 2, XS - 2 | | Feature | Riffle | | Date: | 3/10/2021 | | Field Crew: | Adams, Lawson, Perkinson | | Station | Elevation | |---------|-----------| | 0.7 | 111.5 | | 5.2 | 111.6 | | 9.8 | 111.0 | | 10.9 | 110.6 | | 12.6 | 110.4 | | 14.1 | 110.5 | | 15.1 | 110.9 | | 16.2 | 111.3 | | 17.5 | 111.7 | | 19.3 | 111.8 | | 21.8 | 111.9 | | 24.9 | 112.1 | | | | | | | | SUMMARY DATA | | |--------------------------------|-------| | Bankfull Elevation: | 111.4 | | Bankfull Cross-Sectional Area: | 5.4 | | Bankfull Width: | 10.2 | | Flood Prone Area Elevation: | 112.4 | | Flood Prone Width: | 100.0 | | Max Depth at Bankfull: | 1.0 | | Low Bank Height: | 1.1 | | Mean Depth at Bankfull: | 0.5 | | W / D Ratio: | 19.2 | | Entrenchment Ratio: | 9.8 | | Bank Height Ratio: | 1.14 | | Stream Type | C5 | |-------------|----| |-------------|----| | Site | Alliance Headwaters | |-------------|--------------------------| | Watershed: | Neuse River, 03020201 | | XS ID | UT 3 Reach 2, XS - 3 | | Feature | Pool | | Date: | 3/10/2021 | | Field Crew: | Adams, Lawson, Perkinson | | Station | Elevation | |---------|-----------| | 0.0 | 113.9 | | 1.7 | 113.8 | | 4.0 | 113.6 | | 6.4 | 113.5 | | 8.3 | 113.2 | | 9.5 | 113.1 | | 10.9 | 113.3 | | 11.2 | 113.2 | | 11.6 | 113.0 | | 12.1 | 112.4 | | 12.9 | 112.1 | | 13.6 | 111.8 | | 14.4 | 111.7 | | 15.0 | 111.8 | | 15.5 | 112.0 | | 16.2 | 112.3 | | 17.0 | 112.7 | | 18.0 | 113.1 | | 18.9 | 113.4 | | 20.3 | 113.9 | | 22.0 | 114.1 | | 23.8 | 114.0 | | 26.4 | 113.9 | | | | | | | | | | | SUMMARY DATA | | |--------------------------------|-------| | Bankfull Elevation: | 113.7 | | Bankfull Cross-Sectional Area: | 12.7 | | Bankfull Width: | 13.5 | | Flood Prone Area Elevation: | NA | | Flood Prone Width: | NA | | Max Depth at Bankfull: | 2.1 | | Low Bank Height: | 1.8 | | Mean Depth at Bankfull: | 0.9 | | W / D Ratio: | NA | | Entrenchment Ratio: | NA | | Bank Height Ratio: | 0.88 | | Stream Type | C5 | |-------------|----| |-------------|----| | Site | Alliance Headwaters | |-------------|--------------------------| | Watershed: | Neuse River, 03020201 | | XS ID | UT 3 Reach 1, XS - 4 | | Feature | Riffle | | Date: | 3/10/2021 | | Field Crew: | Adams, Lawson, Perkinson | | 0.5 | 115.5 | |------|-------| | 3.0 | 115.6 | | 5.5 | 115.7 | | 7.0 | 115.7 | | 8.8 | 115.7 | | 9.5 | 115.7 | | 10.2 | 115.5 | | 11.0 | 115.2 | | 11.6 | 114.9 | | 12.2 | 114.6 | | 12.8 | 114.5 | | 13.4 | 114.5 | | 13.9 | 114.6 | | 14.7 | 114.9 | | 15.3 | 115.2 | | 16.6 | 115.4 | | 18.0 | 115.7 | | 19.8 | 115.9 | | 21.2 | 115.9 | | 22.9 | 115.9 | | 24.6 | 116.0 | Station Elevation | SUMMARY DATA | | |--------------------------------|-------| | Bankfull Elevation: | 115.6 | | Bankfull Cross-Sectional Area: | 4.3 | | Bankfull Width: | 7.9 | | Flood Prone Area Elevation: | 116.7 | | Flood Prone Width: | 100.0 | | Max Depth at Bankfull: | 1.1 | | Low Bank Height: | 1.0 | | Mean Depth at Bankfull: | 0.6 | | W / D Ratio: | 14.3 | | Entrenchment Ratio: | 12.7 | | Bank Height Ratio: | 0.92 | | Stream Type | C5 | |-------------|----| |-------------|----| | Site | Alliance Headwaters | |-------------|--------------------------| | Watershed: | Neuse River, 03020201 | | XS ID | UT 4, XS - 1 | | Feature | Pool | | Date: | 3/10/2021 | | Field Crew: | Adams, Lawson, Perkinson | | Elevation | |-----------| | 114.60 | | 114.19 | | 114.47 | | 114.26 | | 114.10 | | 114.10 | | 113.85 | | 113.48 | | 113.08 | | 112.89 | | 112.94 | | 113.03 | | 113.31 | | 113.47 | | 113.61 | | 113.65 | | 113.73 | | 114.09 | | 114.21 | | 114.37 | | 114.46 | SUMMARY DATA | | |--------------------------------|-------| | Bankfull Elevation: | 114.2 | | Bankfull Cross-Sectional Area: | 7.9 | | Bankfull Width: | 11.9 | | Flood Prone Area Elevation: | NA | | Flood Prone Width: | NA | | Max Depth at Bankfull: | 1.3 | | Low Bank Height: | 1.3 | | Mean Depth at Bankfull: | 0.7 | | W / D Ratio: | NA | | Entrenchment Ratio: | NA | | Bank Height Ratio: | 0.99 | | Stream Type | C5 | |-------------|----| |-------------|----| | Site | Alliance Headwaters | |-------------|--------------------------| | Watershed: | Neuse River, 03020201 | | XS ID | UT 3, XS - 2 | | Feature | Riffle | | Date: | 3/10/2021 | | Field Crew: | Adams, Lawson, Perkinson | | Elevation | |-----------| | 115.56 | | 115.61 | | 115.51 | | 115.57 | | 115.43 | | 115.18 | | 115.01 | | 114.87 | | 114.81 | | 114.81 | | 114.85 | | 115.08 | | 115.24 | | 115.46 | | 115.73 | | 115.75 | | 115.68 | | 115.78 | SUMMARY DATA | | |--------------------------------|-------| | Bankfull Elevation: | 115.7 | | Bankfull Cross-Sectional Area: | 3.8 | | Bankfull Width: |
7.5 | | Flood Prone Area Elevation: | 116.5 | | Flood Prone Width: | 100.0 | | Max Depth at Bankfull: | 0.9 | | Low Bank Height: | 0.8 | | Mean Depth at Bankfull: | 0.5 | | W / D Ratio: | 14.7 | | Entrenchment Ratio: | 13.4 | | Bank Height Ratio: | 0.90 | | Stream Type | C5 | |-------------|----| |-------------|----| ## **APPENDIX E: HYDROLOGY DATA** Tables 15A-G. Channel Evidence Stream Gauge Graphs Table 16. Verification of Bankfull Events Figure E1. 30/70 Percentile Graph for Rainfall Soil Temp Graph Table 17. Groundwater Hydrology Data Groundwater Gauge Graphs Table 15A. UT1 Downstream Channel Evidence | UT1 Downstream Channel Evidence | Year 1
(2020) | Year 2
(2021) | Year 3
(2022) | Year 4
(2023) | Year 5
(2024) | Year 6
(2025) | Year 7
(2026) | |---|------------------|------------------|------------------|------------------|------------------|------------------|------------------| | Max consecutive days channel flow | 201 | 119 | | | | | | | Presence of litter and debris (wracking) | Yes | Yes | | | | | | | Leaf litter disturbed or washed away | Yes | Yes | | | | | | | Matted, bent, or absence of vegetation (herbaceous or otherwise) | Yes | Yes | | | | | | | Sediment deposition and/or scour indicating sediment transport | Yes | Yes | | | | | | | Water staining due to continual presence of water | Yes | Yes | | | | | | | Formation of channel bed and banks | Yes | Yes | | | | | | | Sediment sorting within the primary path of flow | Yes | Yes | | | | | | | Sediment shelving or a natural line impressed on the banks | Yes | Yes | | | | | | | Change in plant community (absence or destruction of terrestrial vegetation and/or transition to species adapted for flow or inundation for a long duration, including hydrophytes) | Yes | Yes | | | | | | | Development of channel pattern (meander bends and/or channel braiding) at natural topographic breaks, woody debris piles, or plant root systems | Yes | Yes | | | | | | | Exposure of woody plant roots within the primary path of flow | No | No | | | | | | | Other: | | | | | | | | Table 15B. UT1 Upstream Channel Evidence | UT1 Upstream Channel Evidence | Year 1
(2020) | Year 2
(2021) | Year 3
(2022) | Year 4
(2023) | Year 5
(2024) | Year 6
(2025) | Year 7
(2026) | |---|------------------|------------------|------------------|------------------|------------------|------------------|------------------| | Max consecutive days channel flow | 190 | 160 | | | | | | | Presence of litter and debris (wracking) | Yes | Yes | | | | | | | Leaf litter disturbed or washed away | Yes | Yes | | | | | | | Matted, bent, or absence of vegetation (herbaceous or otherwise) | Yes | Yes | | | | | | | Sediment deposition and/or scour indicating sediment transport | Yes | Yes | | | | | | | Water staining due to continual presence of water | Yes | Yes | | | | | | | Formation of channel bed and banks | Yes | Yes | | | | | | | Sediment sorting within the primary path of flow | Yes | Yes | | | | | | | Sediment shelving or a natural line impressed on the banks | Yes | Yes | | | | | | | Change in plant community (absence or destruction of terrestrial vegetation and/or transition to species adapted for flow or inundation for a long duration, including hydrophytes) | Yes | Yes | | | | | | | Development of channel pattern (meander bends and/or channel braiding) at natural topographic breaks, woody debris piles, or plant root systems | Yes | Yes | | | | | | | Exposure of woody plant roots within the primary path of flow | No | No | | | | | | | Other: | | | | | | | | Table 15C. UT1A Channel Evidence | UT1A Channel Evidence | Year 1
(2020) | Year 2
(2021) | Year 3
(2022) | Year 4
(2023) | Year 5
(2024) | Year 6
(2025) | Year 7
(2026) | |---|------------------|------------------|------------------|------------------|------------------|------------------|------------------| | Max consecutive days channel flow | 97 | 73 | | | | | | | Presence of litter and debris (wracking) | Yes | Yes | | | | | | | Leaf litter disturbed or washed away | Yes | Yes | | | | | | | Matted, bent, or absence of vegetation (herbaceous or otherwise) | Yes | Yes | | | | | | | Sediment deposition and/or scour indicating sediment transport | Yes | Yes | | | | | | | Water staining due to continual presence of water | Yes | Yes | | | | | | | Formation of channel bed and banks | Yes | Yes | | | | | | | Sediment sorting within the primary path of flow | Yes | Yes | | | | | | | Sediment shelving or a natural line impressed on the banks | Yes | Yes | | | | | | | Change in plant community (absence or destruction of terrestrial vegetation and/or transition to species adapted for flow or inundation for a long duration, including hydrophytes) | Yes | Yes | | | | | | | Development of channel pattern (meander bends and/or channel braiding) at natural topographic breaks, woody debris piles, or plant root systems | Yes | Yes | | | | | | | Exposure of woody plant roots within the primary path of flow | No | No | | | | | | | Other: | | | | | | | | Table 15D. UT2 Channel Evidence | UT2 Channel Evidence | Year 1
(2020) | Year 2
(2021) | Year 3
(2022) | Year 4
(2023) | Year 5
(2024) | Year 6
(2025) | Year 7
(2026) | |---|------------------|------------------|------------------|------------------|------------------|------------------|------------------| | Max consecutive days channel flow | 199 | 125 | | | | | | | Presence of litter and debris (wracking) | Yes | Yes | | | | | | | Leaf litter disturbed or washed away | Yes | Yes | | | | | | | Matted, bent, or absence of vegetation (herbaceous or otherwise) | Yes | Yes | | | | | | | Sediment deposition and/or scour indicating sediment transport | Yes | Yes | | | | | | | Water staining due to continual presence of water | Yes | Yes | | | | | | | Formation of channel bed and banks | Yes | Yes | | | | | | | Sediment sorting within the primary path of flow | Yes | Yes | | | | | | | Sediment shelving or a natural line impressed on the banks | Yes | Yes | | | | | | | Change in plant community (absence or destruction of terrestrial vegetation and/or transition to species adapted for flow or inundation for a long duration, including hydrophytes) | Yes | Yes | | | | | | | Development of channel pattern (meander bends and/or channel braiding) at natural topographic breaks, woody debris piles, or plant root systems | Yes | Yes | | | | | | | Exposure of woody plant roots within the primary path of flow | No | No | | | | | | | Other: | | | | | | | | **Table 15E. UT3 Downstream Channel Evidence** | UT3 Downstream Channel Evidence | Year 1
(2020) | Year 2
(2021) | Year 3
(2022) | Year 4
(2023) | Year 5
(2024) | Year 6
(2025) | Year 7
(2026) | |---|------------------|------------------|------------------|------------------|------------------|------------------|------------------| | Max consecutive days channel flow | 119 | 234 | | | | | | | Presence of litter and debris (wracking) | Yes | Yes | | | | | | | Leaf litter disturbed or washed away | Yes | Yes | | | | | | | Matted, bent, or absence of vegetation (herbaceous or otherwise) | Yes | Yes | | | | | | | Sediment deposition and/or scour indicating sediment transport | Yes | Yes | | | | | | | Water staining due to continual presence of water | Yes | Yes | | | | | | | Formation of channel bed and banks | Yes | Yes | | | | | | | Sediment sorting within the primary path of flow | Yes | Yes | | | | | | | Sediment shelving or a natural line impressed on the banks | Yes | Yes | | | | | | | Change in plant community (absence or destruction of terrestrial vegetation and/or transition to species adapted for flow or inundation for a long duration, including hydrophytes) | Yes | Yes | | | | | | | Development of channel pattern (meander bends and/or channel braiding) at natural topographic breaks, woody debris piles, or plant root systems | Yes | Yes | | | | | | | Exposure of woody plant roots within the primary path of flow | No | No | | | | | | | Other: | | | | | | | | Table 15F. UT3 Upstream Channel Evidence | UT3 Upstream Channel Evidence | Year 1
(2020) | Year 2
(2021) | Year 3
(2022) | Year 4
(2023) | Year 5
(2024) | Year 6
(2025) | Year 7
(2026) | |---|------------------|------------------|------------------|------------------|------------------|------------------|------------------| | Max consecutive days channel flow | 136 | 127 | | | | | | | Presence of litter and debris (wracking) | Yes | Yes | | | | | | | Leaf litter disturbed or washed away | Yes | Yes | | | | | | | Matted, bent, or absence of vegetation (herbaceous or otherwise) | Yes | Yes | | | | | | | Sediment deposition and/or scour indicating sediment transport | Yes | Yes | | | | | | | Water staining due to continual presence of water | Yes | Yes | | | | | | | Formation of channel bed and banks | Yes | Yes | | | | | | | Sediment sorting within
the primary path of flow | Yes | Yes | | | | | | | Sediment shelving or a natural line impressed on the banks | Yes | Yes | | | | | | | Change in plant community (absence or destruction of terrestrial vegetation and/or transition to species adapted for flow or inundation for a long duration, including hydrophytes) | Yes | Yes | | | | | | | Development of channel pattern (meander bends and/or channel braiding) at natural topographic breaks, woody debris piles, or plant root systems | Yes | Yes | | | | | | | Exposure of woody plant roots within the primary path of flow | No | No | | | | | | | Other: | | | | | | | | Table 15G. UT4 Channel Evidence | UT4 Channel Evidence | Year 1
(2020) | Year 2
(2021) | Year 3
(2022) | Year 4
(2023) | Year 5
(2024) | Year 6
(2025) | Year 7
(2026) | |---|------------------|------------------|------------------|------------------|------------------|------------------|------------------| | Max consecutive days channel flow | 130 | 228 | | | | | | | Presence of litter and debris (wracking) | Yes | Yes | | | | | | | Leaf litter disturbed or washed away | Yes | Yes | | | | | | | Matted, bent, or absence of vegetation (herbaceous or otherwise) | Yes | Yes | | | | | | | Sediment deposition and/or scour indicating sediment transport | Yes | Yes | | | | | | | Water staining due to continual presence of water | Yes | Yes | | | | | | | Formation of channel bed and banks | Yes | Yes | | | | | | | Sediment sorting within the primary path of flow | Yes | Yes | | | | | | | Sediment shelving or a natural line impressed on the banks | Yes | Yes | | | | | | | Change in plant community (absence or destruction of terrestrial vegetation and/or transition to species adapted for flow or inundation for a long duration, including hydrophytes) | Yes | Yes | | | | | | | Development of channel pattern (meander bends and/or channel braiding) at natural topographic breaks, woody debris piles, or plant root systems | Yes | Yes | | | | | | | Exposure of woody plant roots within the primary path of flow | No | No | | | | | | | Other: | | | | | | | | **Table 16. Verification of Bankfull Events** | Date of Data
Collection | Date of Occurrence | Method | Photo
(if available) | |---|--------------------|--|-------------------------| | April 30, 2020 | April 30, 2020 | Stream gauges and trail cameras captured a
bankfull event at UT3 after 1.17 inches of rain was
documented between April 30 and May 1, 2020 at
an on-site rain gauge | 1 | | November 19, 2020 November 12, 2020 Ot | | Wrack and laid-back vegetation were observed outside the TOB of UT1 after 3.61 inches of rain was documented between November 12 and 13, 2020 at a nearby weather station. | 2 | | March 16, 2021 March 16, 2021 bankfull event on UT1, UT2, and UT3 after | | Stream gauges and trail cameras captured a bankfull event on UT1, UT2, and UT3 after 2.35 inches of rain was documented on March 16, 2021 at an on-site rain gauge | 3-5 | Table 17. Groundwater Hydrology Data | Gauge | Success Criteria Achieved/Max Consecutive Days During Growing Season (Percentage) | | | | | | | | | |-------|---|------------------------|------------------|------------------|------------------|------------------|------------------|--|--| | | Year 1
(2020) | Year 2
(2021) | Year 3
(2022) | Year 4
(2023) | Year 5
(2024) | Year 6
(2025) | Year 7
(2026) | | | | 1 | No
9 days (3.6%) | Yes
37 days (14.9%) | | | | | | | | | 2 | No
9 days (3.6%) | No
21 days (8.4%) | | | | | | | | | 3 | Yes
55 days (22.2%) | Yes
86 days (34.5%) | | | | | | | | | 4 | No
10 days (4.0%) | Yes
36 days (14.5%) | | | | | | | | | 5 | Yes
29 days (11.7%) | No
19 days (7.6%) | | | | | | | | | 6 | No
16 days (6.5%) | No
20 days (8.0%) | | | | | | | | | 7 | No
7 days (2.8%) | No
8 days (3.2%) | | | | | | | | | 8 | Yes
50 days (20.2%) | Yes
51 days (20.5%) | | | | | | | | | 9 | Yes
75 days (32.7%) | Yes
93 days (37.3%) | | | | | | | | | 10 | Yes
72 days (29.0%) | Yes
58 days (23.3%) | | | | | | | | | 11 | Yes
64 days (25.8%) | Yes
42 days (16.9%) | | | | | | | | | 12 | No
18 days (7.3%) | Yes
36 days (14.5%) | | | | | | | | | 13 | No
20 days (8.1%) | Yes
58 days (23.3%) | | | | | | | | | 14 | No
16 days (6.5%) | Yes
44 days (17.7%) | | | | | | | | | 15 | No
13 days (5.2%) | No
18 days (7.2%) | | | | | | | | | 16 | Yes
34 days (13.7%) | Yes
70 days (28.1%) | | | | | | | | | 17 | No
19 days (7.7%) | Yes
36 days (14.5%) | | | | | | | | | 18 | No
10 days (4.0%) | No
19 days (7.6%) | | | | | | | | | 19 | No
8 days (3.2%) | No
10 days (4.0%) | | | | | | | | Table 17. Groundwater Hydrology Data (continued) | Gauge | Success Criteria Achieved/Max Consecutive Days During Growing Season (Percentage) | | | | | | | | | | |-------|---|------------------------|------------------|------------------|------------------|------------------|------------------|--|--|--| | | Year 1
(2020) | Year 2
(2021) | Year 3
(2022) | Year 4
(2023) | Year 5
(2024) | Year 6
(2025) | Year 7
(2026) | | | | | 20 | Yes
36 days (14.5%) | Yes
58 days (23.3%) | | | | | | | | | | 21 | Yes
34 days (13.7%) | Yes
36 days (14.5%) | | | | | | | | | | 22 | Yes
69 days (27.8%) | Yes
56 days (22.5%) | | | | | | | | | | 23 | Yes
35 days (14.1%) | Yes
42 days (16.9%) | | | | | | | | | | 24 | No
5 days (2.0%) | No
14 days (5.6%) | | | | | | | | | | 25 | Yes
46 days (18.5%) | Yes
55 days (21.1%) | | | | | | | | | | 26 | Yes
167 days (67.3%) | Yes
88 days (35.3%) | | | | | | | | | | 27 | Yes
74 days (29.8%) | Yes
57 days (22.9%) | | | | | | | | | | 28 | Yes
45 days (18.1%) | Yes
49 days (19.7%) | | | | | | | | | | 29 | Yes
45 days (18.1%) | Yes
81 days (32.5%) | | | | | | | | | | 30* | NA | Yes
38 days (15.3%) | | | | | | | | | | 31* | NA | Yes
98 days (39.4%) | | | | | | | | | | 32* | NA | Yes
58 days (23.3%) | | | | | | | | | | 33* | NA | Yes
42 days (16.9%) | | | | | | | | | | 34* | NA | Yes
55 days (22.1%) | | | | | | | | | | 35* | NA | Yes
42 days (16.9%) | | | | | | | | | | Ref* | NA | Yes
51 days (20.5%) | | | | | | | | | ^{*} Prior to the MY2 (2021 growing season, six additional wetland gauges were installed in areas of the Site RS felt needed additional data points (near GW19, near vegetation plot 31, near GW 7, at the upstream portion of UT 2, and across UT 1 from GW 11-12). Additionally, a reference groundwater gauge was installed in the wetland preservation area at the headwaters of UT 3 and 4.